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Preface 

The book Remote Sensing for Environmental Monitoring explores the diverse appli-

cations of remote sensing in monitoring and managing environmental resources. It 

covers key areas such as water ecosystems, agriculture, forests, land use and land 

cover analysis, atmospheric and climate studies, coastal and marine environments, 

urban landscapes, and wildlife habitat assessment. Moreover, the book highlights its 

significance and wide-ranging applications in environmental assessment. It explains 

fundamental principles of image interpretation and analysis, details various satel-

lite platforms and sensors, and examines aerial and ground-based remote sensing 

technologies through real-world case studies. Additionally, this book’s chapters 

discuss advancements in remote sensing for Earth resource monitoring, including 

data acquisition, preprocessing techniques, and specialized imaging methods such 

as multispectral, hyperspectral, and thermal infrared imaging. This volume contains 

a total of 15 characters. Chapter 1 explores multispectral, hyperspectral, and thermal 

infrared imaging for environmental monitoring. It covers data acquisition methods, 

image processing techniques, and applications in vegetation health, water quality, 

and urban heat analysis. Chapter 2 examines spatiotemporal changes in snow cover 

within the Gori Ganga watershed, a key tributary of the Kali River in the Uttarak-

hand Himalayas. Using NDSI analysis, it maps snow cover and glacial lake dynamics 

from 1990 to 2022. Chapter 3 focuses on monitoring forest changes in the Western 

Ghats using Synthetic Aperture Radar (SAR) imagery. It applies preprocessing tech-

niques and the Radar Vegetation Index (RVI) with Sentinel-1C data to detect defor-

estation trends. Chapter 4 discusses data acquisition, preprocessing, and analytical 

methods, highlighting applications in forest health, water and soil assessment, and 

urban heat island analysis. Case studies validate these technologies, while future 

challenges and advancements, including AI integration and sensor improvements, 

are explored. Chapter 5 examines the role of remote sensing in geriatric nursing, 

focusing on vital sign monitoring, fall detection, cognitive health assessment, and 

environmental monitoring. It also addresses technical, ethical, and operational chal-

lenges, along with future advancements in sensor technology, AI, and telehealth. 

Chapter 6 applies a geospatial approach to mapping groundwater potential and iden-

tifying suitable sites for artificial recharge in the Narmada River Basin, India. Using

v



vi Preface

eight thematic factors and the Analytical Hierarchy Process (AHP), five groundwater 

potential zones were classified and validated with well-yield data. Chapter 7 explores 

remote sensing applications in detecting freshwater algal blooms, highlighting key 

spectral indices like NDCI, FAI, and ABDI. It discusses their strengths, limitations, 

and challenges in species-level detection. Chapter 8 reviews impact of climate change 

on agriculture, particularly in mountainous regions and developing nations. It high-

lights shifts in monsoons, gendered effects, and the need for adaptation strategies. 

Chapter 9 evaluates the water quality of Lake Llanquihue by estimating chlorophyll-

a concentrations using Sentinel-2 satellite data and three atmospheric correction 

methods. The Acolite B4/B5 algorithm provided the best results, though accuracy 

was limited by sparse monitoring stations. Chapter 10 examines groundwater quality 

in Karnataka’s Dakshina Kannada district, focusing on the hydrogeochemistry of 

the Netravathi and Gurapura catchments. ArcGIS mapping highlights spatial varia-

tions, emphasizing the need for improved monitoring and sustainable groundwater 

management. Chapter 11 assesses groundwater depletion in Uttar Pradesh’s NCR 

region using primary and secondary data. Geospatial tools aid in analysis, providing 

insights for sustainable water management and policy recommendations. Chapter 12 

evaluates soil erosion in Dehradun using Google Earth Engine and RUSLE. Sustain-

able land management, conservation measures, and reforestation are recommended 

to mitigate risks and support environmental sustainability. Chapter 13 documents 

eleven Fissidens moss taxa across multiple locations in the Eastern Ghats, with 

Fissidens pulchellus newly reported. These species exhibit diverse ecological pref-

erences. Chapter 14 discusses the Bisalpur Wetland in Rajasthan, which supports 

biodiversity, including migratory and vulnerable bird species. It provides essential 

ecosystem services but faces threats from human activities like fuelwood collection. 

This volume includes research conducted by scientists, researchers, professors, 

and planners from universities, research labs, and organizations in India and other 

countries. It provides an in-depth analysis of remote sensing applications in natural 

resource mapping while exploring emerging technologies and future trends in envi-

ronmental monitoring. The book offers valuable insights into potential applications, 

challenges, and future directions in the field. 
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Chapter 1 

Remote Sensing for Environment 
Assessment: Multispectral, 

Hyperspectral, and Thermal Imaging 
Applications 

Aman Srivastava and Shubham Jain 

Abstract Environmental challenges are increasingly multifaceted, necessitating 
sophisticated tools for accurate and holistic assessments. Traditional monitoring 
methods commonly fail to capture the intricate details required for effective envi-
ronmental management. This study addresses these limitations by investigating the 
capabilities of multispectral, hyperspectral, and thermal infrared imaging technolo-
gies. These remote sensing techniques utilize a broad spectrum of wavelengths to 
detect and analyze environmental data beyond human perception, providing a crit-
ical understanding of key environmental factors such as vegetation health, water 
quality, urban heat patterns, and soil composition. The study introduces the funda-
mental principles of these imaging technologies, highlighting their physical inter-
actions with environmental features. It further explores data acquisition methodolo-
gies, ranging from satellite platforms and uncrewed aerial vehicles to ground-based 
sensors. It focuses on advanced image processing techniques, including machine 
learning (ML) algorithms like the maximum likelihood classifier, K-means clus-
tering, and the ISODATA algorithm. The practical applications of these techniques 
are illustrated through case studies addressing diverse environmental contexts, such 
as vegetation monitoring in the Amazon, urban heat island mitigation in New York 
City, and water quality assessment in the Great Lakes. Additionally, the study empha-
sizes the integration of thermal infrared imaging with multispectral and hyperspec-
tral data, providing temperature-related understandings crucial for environmental 
studies. The synergistic combination of these technologies, alongside geographic 
information systems (GIS), improves decision-making and facilitates more sustain-
able environmental management practices. Lastly, the study discusses emerging 
challenges and future research directions in the field, aiming to equip researchers
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and policymakers with advanced methodologies for addressing ongoing and future 
environmental challenges. 

Keywords Environmental monitoring · Geospatial technologies · UAV-based 
sensing ·Machine learning in remote sensing · Urban heat islands · Disaster risk 
management 

1.1 Introduction 

Remote sensing has become an indispensable tool in environmental assessment, 
delivering unparalleled capabilities for monitoring and analyzing Earth’s ecosys-
tems across various spatial and temporal scales. It involves acquiring information 
about objects or phenomena without physical contact. It typically uses satellite or 
aircraft-based sensors to detect and record reflected or emitted energy from the Earth’s 
surface and atmosphere (Gao et al. 2019; Lillesand et al. 2015). By providing a 
unique vantage point for observing complex environmental processes and changes, 
remote sensing supports various applications, including land cover mapping, vegeta-
tion monitoring, water quality assessment, and urban planning (Mashala et al. 2023). 
The fundamental principle of remote sensing lies in measuring and analyzing elec-
tromagnetic radiation (EMR) reflected or emitted from the Earth’s surface. Different 
materials interact uniquely with EMR due to their physical and chemical properties, 
allowing sensors to capture distinct spectral signatures that can be analyzed to identify 
and monitor various environmental features (Abdulraheem et al. 2023). For example, 
healthy vegetation reflects strongly in the near-infrared region while absorbing visible 
red light, enabling the assessment of plant health and biomass. Remote sensing 
provides critical data that underpin environmental research and management, and its 
importance continues to grow with technological advancements. 

Advancements in sensor technologies and data processing capabilities have signif-
icantly expanded the application of remote sensing in environmental assessment over 
the past few decades (Toth and Jóźków 2016). Remote sensing provides wide spatial 
coverage, as satellite-based sensors can capture data over vast areas, facilitating 
regional to global-scale assessments (Chuvieco, 2020). The temporal frequency of 
many platforms provides regular revisit times, enabling monitoring of environmental 
changes over time (Manfreda et al. 2018). Additionally, remote sensing can be more 
cost-effective than extensive field surveys for large-scale monitoring (Fascista 2022). 
It allows for observing areas that are difficult or dangerous to access on the ground, 
minimizing risks of disturbance or damage (Pettorelli et al. 2014). Furthermore, 
sensors capture data across various parts of the electromagnetic spectrum, revealing 
information invisible to the human eye, such as thermal properties and chemical 
compositions (Reddy 2018; Lei et al. 2022). These capabilities have made remote 
sensing an essential tool in numerous environmental applications, including land 
use and land cover mapping, vegetation monitoring, water resource management, 
climate change studies, and disaster risk assessment (Thenkabail et al. 2018; Rane
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et al. 2023; Liladhar Rane et al. 2024; Pande et al. 2024; Srivastava and Chinnasamy 
2021, 2024; Jain et al.  2024a, b). 

Remote sensing technologies are categorized into passive and active systems based 
on energy sources. Passive remote sensing relies on natural energy, primarily sunlight, 
to capture reflected or emitted energy from the Earth’s surface using sensors on satel-
lites or aircraft. This method collects data in the electromagnetic spectrum’s visible, 
near-infrared, and thermal infrared regions, with examples including satellites like 
Landsat and Sentinel-2 (Drusch et al. 2012). While effective for large-scale, contin-
uous observations of vegetation health, land cover changes, and surface temperature 
variations, passive remote sensing is limited by factors such as cloud cover, atmo-
spheric conditions, and the availability of sunlight (Li and Roy 2017). Active remote 
sensing involves systems emitting energy to scan objects and areas. Technologies like 
RADAR and LiDAR send signals reflected to the sensor, creating detailed images 
or data models. Active systems can operate day and night and penetrate atmospheric 
obstructions like clouds and rain, providing reliable data under varied environmental 
conditions (National Academy of Science 2015). Radar systems, such as Synthetic 
Aperture Radar (SAR), emit microwave signals to gather detailed information about 
surface characteristics. At the same time, LiDAR uses laser pulses for high-resolution 
topographic mapping and vegetation structure analysis (Pirotti 2011). The selection 
between passive and active remote sensing depends on the specific environmental 
variables being monitored, the required spatial and temporal resolution, and the 
project’s overall goals. By combining these technologies, researchers can holisti-
cally understand environmental changes and their impacts on ecosystems and human 
populations. 

Multispectral, hyperspectral, and thermal imaging are advanced remote sensing 
technologies that provide unique capabilities for environmental assessment. Multi-
spectral imaging captures data in multiple broad spectral bands, typically ranging 
from visible to near-infrared regions. This allows for the differentiation of land cover 
types and assessment of vegetation health using indices like the Normalized Differ-
ence Vegetation Index (NDVI) (Xue and Su 2017). Satellites such as Landsat 8 and 
Sentinel-2 employ multispectral sensors for agricultural monitoring, forest manage-
ment, and land use classification (Soni et al. 2022). Hyperspectral imaging collects 
data across hundreds of narrow, contiguous spectral bands, enabling the detec-
tion of subtle differences in the reflectance properties of Earth’s surface features 
(Homolová et al. 2013). This high spectral resolution provides detailed informa-
tion about material composition, facilitating the identification of specific minerals, 
assessing plant species diversity, detecting plant stress, and monitoring water quality 
(Wambugu et al. 2021). Thermal imaging measures the heat emitted by objects on 
Earth’s surface, providing essential understandings of energy balance, heat fluxes, 
and temperature variations. Thermal sensors on satellites like Landsat 8 Thermal 
Infrared Sensor (TIRS) and the ECOsystem Spaceborne Thermal Radiometer Exper-
iment on Space Station (ECOSTRESS) are used to monitor urban heat islands, detect 
forest fires, assess water body temperatures, and evaluate vegetation stress and soil 
moisture content (Fisher et al. 2020). Combining multispectral or hyperspectral data 
with thermal imagery reveals relationships between land cover, vegetation health,
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and surface temperature dynamics, improving environmental assessments (Guha 
et al. 2020). These advanced imaging technologies enable more precise and all-
rounded environmental monitoring, addressing complex ecological questions and 
management needs. 

Advancements in data processing techniques, particularly machine learning algo-
rithms, have revolutionized remote sensing data analysis. Machine learning enables 
handling large datasets and extracting complex patterns, improving classification 
accuracy and predictive capabilities (Resch et al. 2018; Maxwell et al. 2018). Algo-
rithms such as Support Vector Machines (SVM), Random Forests, and Convolu-
tional Neural Networks (CNNs) are increasingly employed for land cover classifi-
cation, vegetation monitoring, and change detection tasks (Yuan et al. 2020). Inte-
grating machine learning with remote sensing facilitates automated feature extrac-
tion, improves the interpretation of multispectral and hyperspectral data, and supports 
the development of sophisticated environmental models (Vali et al. 2024). Deep 
learning techniques have improved the accuracy of urban land cover mapping and 
detecting subtle environmental changes, contributing to better urban planning and 
resource management (Li et al. 2024). Combining advanced algorithms and high-
quality data refines the ability to monitor environmental conditions and predict future 
changes. 

Remote sensing is essential in environmental studies, providing critical data for 
understanding natural and human-induced changes. Its vast applications encompass 
climate change monitoring, biodiversity conservation, water resources management, 
urban planning, and disaster management. In climate change studies, remote sensing 
enables monitoring of glacier retreats, sea-level rise, alterations in weather patterns, 
and the distribution of carbon stocks (Lenton et al. 2024). For biodiversity conser-
vation, it assists in mapping habitat distribution, tracking species migration, and 
identifying threatened ecosystems (Cavender-Bares et al. 2022). In water resources 
management, remote sensing assesses water quality, monitors changes in water 
bodies, and aids in managing agricultural water usage (Kumar et al. 2022). Urban 
planning utilizes remote sensing to monitor urban sprawl, land use changes, and 
infrastructure development (Abdi 2020). Disaster management provides crucial data 
for responding to natural disasters like floods, wildfires, and hurricanes, enabling 
rapid assessment and resource allocation (Lakshmi 2016). As environmental chal-
lenges grow more complex, these advanced imaging technologies are essential for 
providing accurate, timely, and detailed information and supporting evidence-based 
decision-making in environmental management and policy formulation (Turner 
et al. 2015). Integrating remote sensing data with other geospatial technologies 
uplifts the effectiveness of environmental monitoring and contributes to sustainable 
development goals. 

In light of the growing complexities of environmental challenges, this study aims 
to holistically examine advanced remote sensing technologies, focusing on multi-
spectral, hyperspectral, and thermal infrared imaging. The primary objective is to 
explore how these technologies, integrated with machine learning algorithms, can 
improve environmental monitoring by capturing and analyzing data beyond the capa-
bilities of conventional methods. This study will further explore key principles, data
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acquisition methodologies, and advanced processing techniques, emphasizing the 
use of machine learning algorithms for classification and analysis. Additionally, the 
study will investigate various applications, from vegetation and water quality moni-
toring to urban heat assessment and disaster management. Through the integration 
of remote sensing with GIS, the scope of this study extends to evaluating how these 
combined approaches can boost decision-making in environmental management. 
Case studies will provide real-world context, while discussions on the limitations of 
current technologies, emerging trends, and future research directions will contribute 
to a holistic understanding of the evolving field of remote sensing. Ultimately, this 
work seeks to equip researchers and practitioners with the knowledge to capitalize 
on these advanced technologies for more informed and sustainable environmental 
assessments. 

1.2 Remote Sensing Technologies and Concepts 

Remote sensing technologies have evolved significantly, providing advanced tools 
for environmental assessment by capturing and analyzing electromagnetic radiation 
(EMR) interactions with Earth’s surface materials. Understanding the principles and 
applications of multispectral, hyperspectral, and thermal infrared imaging is essential 
for utilizing these technologies effectively. 

1.2.1 Principles of Multispectral and Hyperspectral Imaging 

Multispectral and hyperspectral imaging are grounded in the principle that different 
materials on Earth’s surface interact uniquely with EMR, resulting in distinct spec-
tral signatures. These signatures are patterns of reflected, absorbed, and emitted 
radiation across varying wavelengths, characteristic of particular materials such as 
vegetation, water, soil, or urban structures (Lillesand et al. 2015). The unique spectral 
behavior arises from materials’ physical and chemical properties, including molec-
ular composition, surface texture, and moisture content (Jensen 2009). For example, 
due to cellular structure, healthy vegetation exhibits strong reflectance in the near-
infrared region. It absorbs red light because of chlorophyll, while water bodies absorb 
most near-infrared radiation, appearing dark in these bands. 

The interaction of EMR with Earth materials involves processes like reflec-
tion, absorption, transmission, scattering, and emission, forming the basis of remote 
sensing techniques that allow the differentiation of various surface features (Richards 
2013). Multispectral imaging captures data across several broad spectral bands, typi-
cally ranging from visible to near-infrared regions, providing general information 
about the reflectance characteristics of materials. Common multispectral sensors 
include Landsat Operational Land Imager (OLI), Sentinel-2 MultiSpectral Instru-
ment (MSI), and Moderate Resolution Imaging Spectroradiometer (MODIS), which
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are widely used for applications in agricultural monitoring, forest management, and 
land use classification (Roy et al. 2014; Drusch et al.  2012). 

In contrast, hyperspectral imaging collects data across hundreds of narrow, 
contiguous spectral bands, providing continuous spectral signatures that enable the 
detection of subtle differences in material properties. This high spectral resolution 
allows for detailed material composition analysis, facilitating tasks such as identi-
fying specific minerals, assessing plant species diversity, detecting vegetation stress, 
and monitoring water quality (Govender et al. 2007; Adam et al. 2010). Examples 
of hyperspectral sensors include NASA’s Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) and the spaceborne Hyperion sensor on the EO-1 satellite (Goetz 
2009; Pearlman et al. 2003). 

The choice between multispectral and hyperspectral imaging depends on the 
specific application, required spectral resolution, and considerations of practical data 
handling and processing complexity. While hyperspectral data provide more detailed 
spectral information, they result in increased data volume and require sophisticated 
processing techniques. Multispectral data, with fewer bands, are less demanding 
computationally and are suitable for broader applications where detailed spectral 
information is not critical (Shaw and Burke 2003). Selecting the appropriate imaging 
technology involves balancing the need for spectral detail with considerations of data 
volume, processing capabilities, and the specific environmental features of interest. 

1.2.2 Basics of Thermal Infrared Imaging 

Thermal infrared (TIR) imaging differs from multispectral and hyperspectral 
imaging, focusing on detecting emitted rather than reflected radiation. All objects 
with a temperature above absolute zero emit thermal radiation, with the amount 
and wavelength determined by the object’s temperature according to Planck’s Law 
(Vollmer and Möllmann 2010). For Earth observation, the thermal infrared region 
of interest lies between 3 and 14 μm, encompassing the wavelengths where Earth’s 
surface emits most of its thermal energy (Kuenzer and Dech 2013). 

Key thermal properties relevant to TIR remote sensing include emissivity, thermal 
inertia, and heat capacity. Emissivity measures how efficiently a surface emits 
thermal radiation compared to a perfect blackbody, affecting the apparent tempera-
ture recorded in thermal imagery (Dash et al. 2002). Different materials have varying 
emissivities; for example, vegetation typically has high emissivity values, while bare 
soils and urban materials may vary widely. Thermal inertia describes a material’s 
resistance to temperature change, influencing how quickly it heats up or cools down, 
which is critical in assessing diurnal temperature variations (Zhang et al. 2016). Heat 
capacity, the amount required to raise a material’s temperature by a certain amount, 
also affects temperature dynamics and is essential in interpreting thermal imagery.
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Thermal infrared imaging has numerous applications in environmental studies. 
Urban climatology uses it to analyze urban heat islands by mapping surface temper-
ature variations and identifying heat hotspots (Voogt and Oke 2003). In agricul-
ture, thermal imaging assists in detecting vegetation stress by identifying changes in 
canopy temperature, which can indicate water stress or disease before visible symp-
toms appear (Jones et al. 2009). Thermal data are also employed in soil moisture 
assessment based on thermal inertia differences between wet and dry soils (Zhang 
and Zhou 2016; Petropoulos et al. 2015). Additionally, thermal imaging is vital in 
monitoring water temperatures of lakes, rivers, and coastal areas, contributing to 
studies on aquatic ecosystem health and thermal pollution (Handcock et al. 2012). 
In geologic applications, thermal infrared sensors detect volcanic activity by iden-
tifying thermal anomalies associated with lava flows or geothermal areas (Blackett, 
2017). 

Combining thermal infrared data with multispectral and hyperspectral data 
provides comprehensive perspectives into environmental conditions. While multi-
spectral or hyperspectral data can reveal the composition and health of vegetation, 
thermal data add information about energy fluxes and stress levels. For instance, 
integrating these datasets allows for a nuanced understanding of how vegetation 
health correlates with surface temperature variations, aiding in drought assessment 
and resource management (Karnieli et al. 2010). This integrated approach improves 
the ability to monitor and model complex environmental processes by providing 
multidimensional datasets that capture both spectral and thermal properties. 

1.2.3 Overview of Data Acquisition Platforms 

Data acquisition platforms play a crucial role in remote sensing, determining the 
spatial resolution, temporal frequency, and spectral capabilities of the collected 
data. The primary platforms include satellites, airborne systems, Unmanned Aerial 
Vehicles (UAVs), and ground-based sensors, each yielding distinct advantages and 
limitations (Colomina and Molina 2014) (see Table 1.1).

Satellites provide extensive spatial coverage and regular revisit times, making 
them ideal for large-scale and long-term environmental monitoring. They carry a 
variety of sensors, including multispectral (e.g., Landsat, Sentinel-2), hyperspectral 
(e.g., Hyperion), and thermal infrared instruments (e.g., Landsat Thermal Infrared 
Sensor, MODIS) (Roy et al. 2014; Drusch et al.  2012). Satellites provide consistent 
data acquisition but are limited by fixed orbits, atmospheric conditions, and rela-
tively coarse spatial resolutions compared to airborne or UAV platforms. Airborne 
systems involve sensors mounted on human-crewed aircraft, providing higher spatial 
resolution data due to lower altitudes and flexible flight planning. Airborne plat-
forms are often used for hyperspectral imaging (e.g., AVIRIS) and LiDAR surveys, 
enabling detailed mapping of small to medium-sized areas (Goetz 2009). They yield 
flexibility in data acquisition timing and sensor configurations but are costlier and 
have limited temporal frequency compared to satellites. UAVs have emerged as
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Table 1.1 Comparison of data acquisition platforms 

Platform Altitude Spatial 
resolution 

Temporal 
resolution 

Application 
areas 

References 

Satellites 600–36,000 km 10 m to 1 km Days to weeks 
(fixed orbits) 

Global 
monitoring, 
land cover, 
climate 
studies 

Roy et al.  
(2014), 
Drusch 
et al. 
(2012) 

Airborne 
systems 

1–10 km Sub-meter to 
5 m  

On-demand 
(mission-specific) 

Detailed 
mapping, 
hyperspectral 
imaging, 
LiDAR 

Goetz 
(2009) 

UAVs < 500 m Centimeter-level On-demand 
(flexible 
missions) 

Agriculture, 
forestry, 
infrastructure 
inspection 

Manfreda 
et al. 
(2018) 

Ground-based Ground level Millimeter-level Continuous or 
periodic 

Calibration, 
validation, 
detailed site 
studies 

Milton 
et al. 
(2009)

important platforms for remote sensing, providing high spatial resolution, flexibility, 
and cost-effectiveness for local-scale studies (Aasen et al. 2018). UAVs can carry 
various sensors, including multispectral, hyperspectral, thermal infrared, and LiDAR, 
allowing data collection for specific applications (Manfreda et al. 2018). They are 
ideal for monitoring small areas, conducting frequent surveys, and accessing hard-
to-reach locations. However, UAVs have limitations in flight time, payload capacity, 
and regulatory constraints regarding airspace usage. Ground-based sensors include 
portable spectroradiometers and thermal cameras for field measurements and cali-
bration (Milton et al. 2009). These instruments provide the highest spatial resolution 
and are essential for validating and calibrating data from airborne and satellite plat-
forms. Ground-based observations are critical for detailed studies of specific sites 
but lack spatial coverage and are labor-intensive. 

The selection of an appropriate data acquisition platform depends on the study’s 
objectives, required spatial and temporal resolutions, area of interest, and resource 
availability. Combining data from multiple platforms can refine analysis by utilizing 
their strengths. For example, satellite data provide broad coverage and temporal 
consistency, while UAVs yield high-resolution insights into specific areas of interest 
(Pricope et al. 2022). Integrating datasets from different platforms facilitates multi-
scale analyses, improving the understanding of environmental processes across 
various spatial and temporal scales.
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1.3 Data Processing and Machine Learning Techniques 

The transformation of raw remote sensing data into actionable environmental strate-
gies involves several critical steps, including image pre-processing, feature extrac-
tion, classification using machine learning algorithms, and accuracy assessment. 
These processes refine the quality of the data, extract meaningful features, and 
classify environmental features with high accuracy, ultimately supporting effective 
environmental monitoring and decision-making. 

1.3.1 Image Pre-processing and Feature Extraction 

Image pre-processing is a fundamental step that aims to correct distortions or degrada-
tions in the raw data resulting from sensor limitations, atmospheric conditions, and 
geometric discrepancies. Pre-processing ensures that the images accurately repre-
sent the Earth’s surface, essential for reliable analysis and interpretation (Richards 
2013). Radiometric correction addresses variations in sensor response and atmo-
spheric effects that can alter the true radiance values of the Earth’s surface. Tech-
niques such as dark object subtraction and atmospheric correction models like Fast 
Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) adjust for 
atmospheric scattering and absorption, improving the radiometric integrity of the data 
(Chavez 1996). Geometric correction rectifies spatial distortions caused by sensor 
motion, Earth rotation, and terrain relief, aligning the images to a coordinate system 
through image-to-map rectification and image-to-image registration using ground 
control points (Jensen 2015). 

Feature extraction involves transforming the pre-processed data into variables 
more directly related to the environmental parameters of interest. Vegetation indices 
are among the most widely used feature extraction techniques, providing quantitative 
measures of vegetation health, biomass, and productivity. The Normalized Differ-
ence Vegetation Index (NDVI), calculated using near-infrared (NIR) and red-light 
reflectance, is instrumental in monitoring vegetation dynamics, drought conditions, 
and deforestation (Tucker 1979). For instance, NDVI has been used to assess the 
impact of drought on vegetation in the Sahel region, revealing significant correlations 
between NDVI values and rainfall patterns (Anyamba and Tucker 2005). 

The Enhanced Vegetation Index (EVI) improves upon NDVI by optimizing sensi-
tivity in high-biomass regions and reducing atmospheric influences, making it suit-
able for monitoring dense vegetation canopies (Huete et al. 2002). Other indices 
like the Soil-Adjusted Vegetation Index (SAVI) incorporate soil brightness correc-
tion factors, refining vegetation monitoring in arid and semi-arid regions where soil 
reflectance can affect vegetation signal (Xu et al. 2006; Huete 1988). The Normalized 
Difference Water Index (NDWI) monitors water bodies, assisting in flood mapping, 
wetland studies, and irrigation management (McFeeters 1996). These indices enable
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researchers to derive meaningful environmental information from spectral data, 
facilitating better understanding and management of natural resources. 

Spectral unmixing is another critical feature extraction technique that is instru-
mental in analyzing hyperspectral data where pixels may contain mixtures of different 
materials. Linear spectral unmixing decomposes mixed pixels into fractional abun-
dances of pure spectral endmembers, allowing for the quantification of specific mate-
rials within a pixel (Keshava and Mustard 2002). This technique has been effectively 
applied in urban environments to map impervious surfaces, vegetation, and soil, 
aiding urban planning and management (Roberts et al. 1998). In mineral explo-
ration, spectral unmixing assists in identifying mineral compositions, improving the 
detection of ore deposits (Van der Meer et al. 2012). 

1.3.2 Machine Learning Algorithms for Classification 

Machine learning algorithms have revolutionized the classification of remote sensing 
data by enabling handling large datasets and capturing complex patterns within the 
data. These algorithms can be broadly categorized into supervised and unsupervised 
learning methods, each with advantages and environmental monitoring applications. 

Supervised classification methods rely on labeled training data to learn the 
relationships between spectral signatures and land cover classes. The Maximum 
Likelihood Classifier (MLC) is a traditional statistical method that assumes a normal 
data distribution within each class. It calculates the probability of a pixel belonging 
to a particular class based on its spectral values (Otukei and Blaschke 2010). While 
MLC is straightforward, it may not perform well with non-normally distributed data 
or complex class boundaries. Support Vector Machines (SVM) are robust classifiers 
that can handle high-dimensional data and complex class separations by finding the 
optimal hyperplane that maximizes the margin between classes (Mountrakis et al. 
2011; Elbeltagi et al. 2022). SVMs are particularly effective in hyperspectral image 
classification due to their ability to manage the high dimensionality and limited 
training samples often associated with such data (Melgani and Bruzzone 2004). For 
example, SVMs have been successfully applied to accurately classify urban land 
cover types, aiding in urban growth monitoring and planning (Zhu and Blumberg 
2002). Random Forests (RF) are ensemble learning methods that construct multiple 
decision trees during training and output the mode of the classes for classification 
tasks (Breiman 2001). RF algorithms are known for their high accuracy, resistance to 
overfitting, and ability to handle datasets with a large number of input variables. They 
have been widely used in land cover classification, vegetation mapping, and change 
detection studies (Belgiu and Drăguţ 2016; Elbeltagi et al. 2023a; Masood et al. 
2023; Vishwakarma et al. 2024). For instance, RF has been utilized to map forest 
types and health conditions, contributing to forest management and conservation 
efforts (Gislason et al. 2006).
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Unsupervised classification methods do not require labeled training data; 
instead, natural groupings within the data are identified based on spectral simi-
larity. K-means clustering partitions the data into a predefined number of clusters 
by minimizing the variance within each cluster (MacQueen 1967). The Iterative 
Self-Organizing Data Analysis Technique Algorithm (ISODATA) extends K-means 
by allowing the number of clusters to change during the iteration process based 
on specific criteria (Ball and Hall 1965). These methods are practical for prelimi-
nary analysis and exploratory data assessment, especially in areas with limited prior 
knowledge. 

Deep learning approaches have emerged as powerful tools for remote sensing 
image classification. While CNNs excel at automatically learning hierarchical 
features from raw image data and capturing spatial and spectral patterns that tradi-
tional methods may miss (Zhang et al. 2019; Zhang et al. 2016), Deep Neural 
Networks (DNNs) provide a broader framework for learning complex data repre-
sentations. DNNs have been widely utilized in remote sensing for tasks requiring 
multisource data integration, such as fusing spectral, spatial, and temporal infor-
mation for land cover classification and allied applications. Their ability to model 
intricate relationships between input features makes them particularly effective in 
detecting subtle changes in land use or vegetation dynamics (Elbeltagi et al. 2023b). 
CNNs have been applied to classify hyperspectral images for crop type identification, 
improving precision agriculture practices (Li et al. 2019; Elbeltagi et al. 2024). 

Object-Based Image Analysis (OBIA) integrates spectral information with 
spatial context by segmenting images into meaningful objects rather than individual 
pixels (Blaschke 2010). OBIA considers shape, texture, and contextual relationships, 
improving classification accuracy in high-resolution imagery where spatial patterns 
are significant. This approach has been practical in urban mapping, where features 
like buildings, roads, and vegetation patches exhibit distinct spatial characteristics 
(Blaschke et al. 2014). 

The selection of an appropriate machine learning algorithm depends on factors 
such as the classification task’s complexity, the input data’s nature, computational 
resources, and the desired level of accuracy. Table 1.2 summarizes key machine 
learning classification techniques, their applications, strengths, weaknesses, and 
suitable data types.

1.3.3 Accuracy Assessment and Validation Techniques 

Assessing the accuracy of classification results is essential to ensure the reliability 
and validity of remote sensing analyses. Accuracy assessment involves comparing 
the classified data with reference information that is assumed to be true, typically 
derived from ground truth data, higher-resolution imagery, or expert interpretation 
(Congalton and Green 2019). The confusion matrix, also known as the error matrix, is 
a standard tool for accuracy assessment. It tabulates the relationship between known 
reference data and the corresponding classified data, allowing for the calculation of
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various accuracy metrics. Overall accuracy represents the proportion of correctly 
classified samples over the total number of samples. Producer’s accuracy measures 
the probability that a reference sample is correctly classified, indicating errors of 
omission. User’s accuracy reflects the probability that a classified pixel represents 
the actual class on the ground, indicating errors of commission (Foody 2020). The 
Kappa coefficient is a statistical measure that accounts for the possibility of agreement 
occurring by chance. It provides a more rigorous classification accuracy assessment, 
particularly when the dataset has an unequal distribution of classes (Cohen 1960). 
However, some studies suggest caution in interpreting Kappa due to its sensitivity to 
class prevalence and the number of classes (Foody 2020). Spatially explicit accuracy 
assessment methods consider the spatial distribution of classification errors, identi-
fying patterns or clusters of misclassifications that may be associated with specific 
land cover types or environmental conditions (Olofsson et al. 2014). Additionally, 
cross-validation techniques, such as k-fold cross-validation, can be used to evaluate 
the generalizability of the classification model by partitioning the data into training 
and testing subsets multiple times. Validation of remote sensing products is further 
improved by integrating field measurements and high-resolution reference data. For 
example, in vegetation studies, in-situ leaf area index (LAI) or biomass measurements 
can validate remote sensing-derived estimates, improving model calibration and 
accuracy (Weiss et al. 2020). In water quality assessments, ground-based measure-
ments of parameters like chlorophyll concentration or turbidity provide essential 
validation data for satellite-derived indices (Rolim et al. 2023). 

1.4 Environmental Monitoring Applications 

Advanced imaging technologies such as multispectral, hyperspectral, and thermal 
imaging have revolutionized environmental monitoring by providing detailed, timely, 
and spatially extensive data. These technologies enable the assessment of vegeta-
tion health, land cover dynamics, biodiversity, water quality, coastal zone manage-
ment, urban heat islands, and air quality. This section explores these applica-
tions, highlighting how remote sensing contributes to understanding and managing 
environmental systems. 

1.4.1 Vegetation, Land Cover, and Biodiversity 

Remote sensing technologies have significantly boosted the ability to monitor vege-
tation health, assess biodiversity, and track land cover changes at various scales. 
Multispectral and hyperspectral imaging are extensively used in precision agriculture 
to monitor crop health and predict yields. Vegetation indices such as the Normalized 
Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) detect
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stress in crops before it becomes visible to the naked eye, facilitating timely interven-
tions (Mulla 2013). NDVI, calculated using near-infrared and red reflectance, ranges 
from – 1 to 1, with higher values indicating healthier vegetation. EVI improves upon 
NDVI by reducing atmospheric influences and improving sensitivity in high-biomass 
regions (Huete et al. 2002). 

In forestry, these technologies enable the assessment of forest health, deforestation 
detection, and forest regeneration monitoring. Combining LiDAR with multispec-
tral data has effectively estimated biomass and carbon stocks in tropical forests, 
contributing to climate change studies and conservation efforts (Asner et al. 2012). 
Hyperspectral imaging detects subtle changes in plant spectral signatures associated 
with disease or pest infestations, allowing for early intervention and management 
(Mahlein et al. 2012). For biodiversity assessment, hyperspectral data can distin-
guish between plant species based on their unique spectral signatures, aiding in 
mapping species distribution and detecting invasive species (Fassnacht et al. 2016). 
This detailed spectral information supports conservation planning and ecosystem 
management. Multispectral imagery also assesses habitat fragmentation and connec-
tivity, which are crucial for wildlife conservation efforts by identifying corridors and 
barriers affecting species movement (Vos et al. 2001). 

Remote sensing plays a vital role in land cover change detection, enabling the 
monitoring of urban expansion, agricultural development, and natural habitat loss. 
Time series of multispectral images track changes over time, informing land use 
planning and environmental impact assessments (Song et al. 2018). Satellite-based 
monitoring is essential for programs like REDD + (Reducing Emissions from Defor-
estation and Forest Degradation), which rely on remote sensing to track forest cover 
changes and support climate change mitigation efforts (Reiche et al. 2016). Addition-
ally, remote sensing assists in mapping cropland extent and crop type identification, 
monitoring agricultural intensification, and informing food security assessments and 
agricultural policy (Teluguntla et al. 2015). 

1.4.2 Water Quality Monitoring and Coastal Zone 

Management 

Remote sensing yields a synoptic view of water bodies, enabling large-scale assess-
ment of water quality parameters such as surface temperature, turbidity, and chloro-
phyll concentration. Thermal infrared and multispectral sensors on satellites and 
UAVs monitor these parameters, indicating pollutants and algal blooms (Kutser 
2009). High chlorophyll levels, often indicative of harmful algal blooms, are detected 
by analyzing reflectance in the blue and green bands using multispectral and hyper-
spectral data, aiding in water quality management and public health protection. 
Turbidity and sediment load increase reflectance in the visible and near-infrared 
bands due to suspended sediments; monitoring these changes helps manage erosion 
processes and maintain aquatic ecosystem health (Doxaran et al. 2002). Thermal
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infrared imaging maps surface water temperatures, which is crucial for understanding 
aquatic ecosystem dynamics and the impacts of thermal pollution (Handcock et al. 
2012). Hyperspectral imaging can detect chemical pollutants and oil spills on water 
surfaces, improving environmental monitoring and disaster response (Leifer et al. 
2012). 

In coastal zone management, remote sensing is crucial in monitoring shoreline 
changes, assessing coastal erosion, and managing resources. Multispectral imagery 
tracks shoreline dynamics over time, informing erosion management strategies and 
infrastructure planning (Boak and Turner 2005). Hyperspectral data assess coral 
reef health and detect bleaching events, contributing to marine conservation efforts 
(Mumby et al. 2004). Combining multispectral imagery with digital elevation models 
helps assess the potential impacts of sea-level rise on coastal communities, supporting 
adaptation strategies (Nicholls and Cazenave 2010). 

1.4.3 Urban Heat Island and Air Quality Assessment 

Thermal infrared imaging is essential for studying urban climatology and the urban 
heat island (UHI) effect, where urban structures absorb and re-radiate more heat than 
surrounding rural areas. By analyzing thermal infrared images, researchers identify 
areas with significant temperature variations, indicating heat hotspots within cities 
(Voogt and Oke 2003). Combining thermal data with multispectral land cover classi-
fications helps understand the relationship between urban land use and temperature 
patterns, informing urban planning strategies to mitigate heat accumulation (Weng 
et al. 2004). Time series of thermal imagery reveals how urban heat patterns change 
diurnally and seasonally, guiding the implementation of mitigation measures such 
as increasing vegetation cover and using reflective materials (Imhoff et al. 2010). 
Remote sensing also contributes to air quality assessment, which is traditionally 
reliant on ground-based sensors. Multispectral data from sensors like MODIS esti-
mate aerosol optical depth, providing observations into aerosol concentrations and 
distribution (Levy et al. 2007). Hyperspectral sensors detect and quantify atmospheric 
gases, including nitrogen dioxide and sulphur dioxide, refining understanding of air 
pollution patterns and supporting regulatory compliance (Streets et al. 2013). These 
capabilities contribute to public health assessments and inform policies to improve 
air quality. 

1.5 Case Studies 

Several real-world case studies exemplify the practical applications of multispec-
tral, hyperspectral, and thermal imaging, highlighting their impact on environmental 
monitoring and management.
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1.5.1 Vegetation Monitoring in the Amazon Rainforest 

The Amazon Rainforest, a critical global ecosystem, has been extensively monitored 
using remote sensing technologies. Multispectral and hyperspectral imagery have 
been employed to assess deforestation rates, forest health, and biodiversity. Vegeta-
tion indices such as NDVI provide an understanding of the extent of deforestation and 
the health of remaining forests, facilitating the tracking of illegal logging activities 
and informing conservation strategies (Hansen et al. 2013). Integrating satellite data 
with ground observations supports initiatives to preserve the rainforest and mitigate 
climate change. 

1.5.2 Agricultural Drought Assessment in India 

India frequently faces agricultural droughts that significantly affect crop yields and 
food security. Remote sensing technologies have been instrumental in assessing and 
monitoring drought conditions nationwide. Multispectral imagery from satellites like 
Landsat and Sentinel-2 has been used to calculate vegetation indices such as NDVI 
and the Vegetation Condition Index (VCI) to monitor crop health and soil moisture 
levels (Kogan 2001; Rhee et al. 2010). These indices help identify drought-affected 
areas by detecting anomalies in vegetation vigor, enabling timely interventions by 
policymakers and farmers to mitigate impacts. For example, the Indian government 
utilizes remote sensing data to implement drought relief measures and optimize water 
resource allocation, contributing to more resilient agricultural practices (Singh et al. 
2003; Chinnasamy and Srivastava 2021). 

1.5.3 Urban Heat Island Mitigation in New York City 

New York City has been the focus of studies on urban heat islands using thermal 
infrared remote sensing. Data from satellites like Landsat and MODIS have been used 
to map surface temperatures and identify heat hotspots within the city (Rosenzweig 
et al. 2009). The findings have guided the implementation of mitigation strategies, 
including the installation of green roofs, the creation of urban parks, and the use 
of reflective materials, all aimed at reducing the UHI effect and improving urban 
liveability. These measures contribute to energy savings, reduce heat-related health 
risks, and boost urban sustainability.
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1.5.4 Water Quality Monitoring in the Great Lakes 

The Great Lakes in North America have been monitored for water quality using 
remote sensing technologies. Multispectral sensors on satellites such as Sentinel-2 
have been used to track algal blooms, sediment plumes, and changes in water temper-
ature (Binding et al. 2018). This information is crucial for managing water resources, 
protecting aquatic ecosystems, and ensuring safe drinking water supplies for millions 
of people. Remote sensing data support early warning systems for harmful algal 
blooms, inform regulatory actions and guide conservation efforts in the region. 

1.5.5 Desertification Assessment in the Sahel Region, Africa 

The Sahel region in Africa faces severe desertification due to climatic variability and 
human activities such as overgrazing and deforestation. Remote sensing provides 
significant data for assessing land degradation and vegetation dynamics in this vulner-
able region. Using multispectral data from MODIS and Landsat, researchers calculate 
vegetation indices to monitor changes in vegetation cover over time, identifying areas 
undergoing desertification (Mayaux et al. 2013; Anyamba and Tucker 2005). These 
assessments inform land management practices, support reforestation efforts, and 
contribute to programs like the Great Green Wall initiative to combat desertification 
and restore degraded lands (Goffner et al. 2019). 

Table 1.3 demonstrates the versatility and global applicability of multispectral, 
hyperspectral, and thermal imaging in environmental monitoring. From agricultural 
management in India to coral reef conservation in Australia and wildfire monitoring 
in the United States, remote sensing technologies provide critical data that inform 
environmental policies, resource management, and disaster response strategies. As 
sensor technologies continue to advance and new analysis techniques are developed, 
the scope of these applications is likely to expand, delivering increasingly detailed and 
timely information for environmental management and policy-making worldwide.

1.6 Integrating Remote Sensing with Geographic 

Information Systems 

Integrating remote sensing data with Geographic Information Systems (GIS) has 
revolutionized environmental analysis by empowering all-rounded, spatially explicit, 
and temporally dynamic assessments. Remote sensing provides detailed imagery and 
spectral data, while GIS provides powerful spatial analysis and visualization capabil-
ities. This synergy improves the ability to understand, model, and manage complex 
environmental processes, supporting informed decision-making in environmental 
management and policy formulation (Rane et al. 2023; Liladhar Rane et al. 2024).
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Table 1.3 Environmental case studies from across the globe 

Case study Objectives Applied 
Techniques 

Imaging 
Technology 
Used 

References 

Agricultural 
drought 
assessment in 
India 

Monitor drought 
conditions, assess 
crop health 

NDVI, VCI 
analysis, anomaly 
detection 

Landsat, 
Sentinel-2 

Kogan (2001), 
Singh et al. 
(2003) 

Urban heat island 
analysis in Delhi, 
India 

Identify heat 
hotspots, guide 
mitigation 
strategies 

Thermal infrared 
imaging, land use 
analysis 

Landsat 8 Grover and 
Singh (2015) 

Deforestation 
monitoring in the 
Congo Basin, 
Africa 

Track forest cover 
changes, detect 
illegal logging 

Time-series 
analysis, change 
detection 

Landsat, 
MODIS 

Potapov et al. 
(2012) 

Desertification 
assessment in the 
Sahel Region, 
Africa 

Assess land 
degradation, 
monitor vegetation 
dynamics 

Vegetation indices 
(NDVI), trend 
analysis 

MODIS, 
Landsat 

Anyamba and 
Tucker (2005) 

Coral reef 
monitoring in the 
Great Barrier 
Reef, Australia 

Map coral health, 
detect bleaching 
events 

Hyperspectral 
imaging, spectral 
analysis 

Airborne and 
satellite 
hyperspectral 
sensors 

Hedley et al. 
(2016) 

Glacial retreat 
monitoring in 
Greenland 

Assess glacial 
melting, model 
sea-level rise 

Thermal infrared 
imaging, temporal 
analysis 

MODIS, 
ASTER 

Cooper and 
Smith (2019) 

Forest fire 
monitoring in 
California, USA 

Detect active fires, 
assess burn 
severity 

Thermal imaging, 
fire mapping 

MODIS, 
VIIRS 

Giglio et al. 
(2008) 

Algal bloom 
monitoring in 
Lake Victoria, 
East Africa 

Detect and monitor 
harmful algal 
blooms 

Chlorophyll 
mapping, spectral 
analysis 

Sentinel-2, 
multispectral 
sensors 

Ogembo and 
Mohamed 
(2023) 

Vegetation 
monitoring in the 
Amazon 
Rainforest 

Assess 
deforestation rates, 
forest health, 
biodiversity 

NDVI analysis, 
change detection 

Multispectral 
and 
hyperspectral 
imagery 

Hansen et al. 
(2013) 

Urban heat island 
mitigation in New 
York City, USA 

Identify heat 
hotspots, guide 
mitigation 
strategies 

Thermal infrared 
imaging, land 
cover classification 

Landsat, 
MODIS 

Rosenzweig 
et al. (2009) 

Water quality 
monitoring in the 
Great Lakes, 
North America 

Monitor algal 
blooms, sediment 
plumes, water 
temperature 

Chlorophyll 
concentration 
mapping, thermal 
analysis 

Sentinel-2, 
multispectral 
sensors 

Binding et al. 
(2018)
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1.6.1 Remote Sensing and GIS Synergy 

Remote sensing and GIS are complementary technologies that, when integrated, 
form a powerful toolkit for environmental analysis. Remote sensing supplies up-
to-date spatial data that can be incorporated into GIS platforms, combining various 
data layers—such as elevation, land cover, and hydrology—with remote sensing 
imagery to create a multidimensional spatial analysis environment (Ehlers et al. 
1989). The synergy between these technologies refines understanding, modeling, and 
managing complex environmental processes by allowing holistic, spatially explicit, 
and temporally dynamic assessments (Goodchild 2018). 

Key processes in integrating remote sensing data with GIS include georefer-
encing and orthorectification and aligning remote sensing images with GIS coor-
dinate systems for accurate overlay with other spatial data (Toutin 2004). Remote 
sensing data are often converted into GIS-compatible formats, such as raster datasets 
or vector layers, facilitating seamless integration. Additionally, GIS tools can extract 
attributes from remote sensing data and associate them with spatial features, enriching 
existing GIS datasets (Congalton and Green 2019). The combination of GIS and 
time-series remote sensing data enables the analysis of environmental changes over 
time, helping identify trends and patterns such as deforestation progression, urban 
expansion, or changes in water quality (Singh 1989; Singh et al. 2024). Thermal data 
can be combined with optical and spectral data to understand environmental condi-
tions comprehensively; integrating temperature data with vegetation indices helps 
assess plant health under heat stress (Karnieli et al. 2010). The combination of GIS 
and time-series remote sensing data enables the analysis of environmental changes 
over time, which is crucial for understanding long-term environmental trends and 
assessing the effectiveness of conservation efforts (Lu and Weng 2007; Sahu et al. 
2024; Singh et al. 2025). 

1.6.2 Applications of Remote Sensing and GIS in Land Use, 

Urban Planning, and Water Resources 

1.6.2.1 Land Use and Land Cover Mapping 

Integrating remote sensing and GIS significantly improves land use and land cover 
mapping. GIS data, such as topography and soil types, improve the accuracy of land 
cover classifications derived from remote sensing (Lu and Weng 2007). Time-series 
remote sensing data integrated with GIS enable detailed analysis of land use and 
land cover changes over time, supporting sustainable land management practices 
and policymaking. For example, India’s National Remote Sensing Centre (NRSC) 
uses satellite imagery integrated with GIS to monitor agricultural lands, forests, 
urban areas, and water bodies, producing detailed maps that inform land management 
decisions (https://www.nrsc.gov.in/, accessed 21 May 2025).

https://www.nrsc.gov.in/
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1.6.2.2 Urban Planning and Management 

When combined with GIS layers of infrastructure and zoning information, remote 
sensing data on urban extent enable predictive modeling of urban growth patterns 
(Herold et al. 2003). Thermal remote sensing data integrated with GIS layers of 
population density and land use inform strategic planning of urban green spaces 
to mitigate urban heat islands (Voogt and Oke 2003; Norton et al. 2015). Cities 
like Singapore employ high-resolution satellite imagery and GIS to support urban 
planning and development, using remote sensing data to monitor land use changes, 
assess green cover, and manage infrastructure development (Chow and Roth 2006; 
Peijun et al. 2010). 

1.6.2.3 Water Resource Management 

Integrating remote sensing data on land cover and topography with GIS hydrolog-
ical modeling tools boosts watershed-scale analysis of water resources (Jenson and 
Domingue 1988). Combining remote sensing-derived flood extent data with GIS 
layers of elevation, infrastructure, and population allows for detailed flood risk assess-
ment and management (Sanyal and Lu 2004). In the Colorado River Basin, remote 
sensing data from satellites like Landsat and MODIS are integrated into GIS to 
monitor water quality and quantity, aiding in managing water resources by providing 
real-time data on water levels, temperature, and sediment load (Mishra and Singh 
2010). 

1.7 Improving Environmental Decision-Making Through 

GIS Integration 

Integrating remote sensing data into GIS platforms forms the backbone of environ-
mental decision support systems (DSS), providing policymakers and environmental 
managers with tools to simulate scenarios and predict outcomes of various manage-
ment decisions (Malczewski 2006). GIS-based DSS enables visualization of the 
consequences of actions such as deforestation, urban expansion, or new conserva-
tion policies. This capability is crucial for making informed, data-driven decisions 
that balance short-term needs with long-term environmental sustainability. 

Integrating real-time remote sensing data into GIS allows for prompt decision-
making in situations requiring immediate response, such as wildfire management 
or flood prevention (Goodchild 2007). Real-time monitoring and alert systems can 
generate notifications based on predefined criteria, facilitating rapid mobilization 
of resources and efficient response strategies (Goodchild and Glennon 2010). Web-
based platforms like Google Earth Engine and ArcGIS Online have democratized 
remote sensing and GIS integration access, enabling collaborative environmental
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monitoring and decision-making (Gorelick et al. 2017). Integrating machine learning 
and artificial intelligence (AI) with GIS and remote sensing data further refines 
decision-making capabilities, enabling advanced predictive modeling and automated 
feature extraction (Ma et al. 2019). 

1.8 Advanced Integration Techniques 

1.8.1 Machine Learning and AI in GIS-Remote Sensing 

Integration 

The fusion of machine learning and artificial intelligence (AI) with GIS and 
remote sensing data has led to significant advancements in environmental anal-
ysis (Table 1.4). Object-Based Image Analysis (OBIA) combines remote sensing 
image segmentation with GIS data to improve classification accuracy, particularly 
in heterogeneous landscapes (Blaschke 2010). Deep learning approaches, such as 
Convolutional Neural Networks (CNNs), are increasingly utilized to analyze inte-
grated remote sensing and GIS data for tasks like land cover classification and change 
detection (Zhang et al. 2016). These models automatically learn hierarchical features 
from raw data, improving classification performance and enabling analysis of large, 
high-dimensional datasets.

1.8.2 Web-Based GIS and Remote Sensing Platforms 

Advancements in cloud computing and big data technologies address the chal-
lenges of processing and analyzing vast volumes of remote-sensing data (Yang et al. 
2017). Distributed processing platforms like Google Earth Engine enable planetary-
scale analysis of remote sensing data, providing researchers with the computa-
tional resources necessary to handle big data without extensive local infrastruc-
ture (Gorelick et al. 2017). Similarly, ArcGIS Online facilitates integrating and 
analyzing remote sensing data with other GIS layers, supporting collaborative efforts 
in environmental management (Fu and Sun 2010). 

1.9 Conclusion 

Multispectral, hyperspectral, and thermal imaging technologies play a pivotal role in 
environmental monitoring and assessment by revealing critical information about the 
Earth’s surface and atmosphere that is inaccessible through conventional means. By 
interlinking different portions of the electromagnetic spectrum, these remote sensing
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Table 1.4 Challenges, emerging trends, and future research directions in remote sensing and GIS 
technologies 

Challenges Emerging trends Future research 
directions 

References 

Spatial and 
temporal resolution 
trade-offs 

Development of 
CubeSats and 
SmallSats providing 
high temporal 
resolution at lower 
cost 

Multi-scale integration 
across UAVs, airborne, 
and satellite platforms 

Whitcraft et al. (2015), 
Transon et al. (2018) 

Atmospheric 
interference 

Advanced 
atmospheric 
correction algorithms 

Development of robust 
algorithms for 
atmospheric correction 
in diverse conditions 

Gao et al. (2009) 

Data volume and 
processing 
challenges 

Cloud computing and 
big data technologies 

Distributed processing 
platforms and data 
cubes 

Yang et al. (2017) 

Calibration and 
validation 
difficulties 

Harmonization of 
sensor data 

Consistent long-term 
datasets for 
environmental studies 

Justice et al. (2002), 
Wulder et al. (2015) 

Classification and 
interpretation 
complexities 

Machine learning and 
AI applications 

Improved algorithms for 
feature extraction and 
classification 

Ma et al. (2019) 

Data quality and 
accuracy concerns 

Advanced statistical 
models for 
uncertainty 
quantification 

Methods to quantify and 
communicate 
uncertainty in remote 
sensing products 

Atkinson and Foody 
(2002) 

Interoperability 
issues 

Adoption of open 
standards for 
geospatial data 

Improved data sharing 
and integration 
capabilities across 
platforms 

Yang et al. (2014) 

Real-time 
integration 
challenges 

Internet of Things 
(IoT) and sensor 
networks integration 

Development of 
real-time monitoring 
and early warning 
systems 

Hart and Martinez 
(2006) 

Capacity building 
needs 

User-friendly tools 
and platforms 

Training programs and 
infrastructure 
development; improving 
the accessibility of 
remote sensing data to 
non-experts 

Nedovic-Budic et al. 
(2011)

technologies allow thorough analyses of vegetation health, water quality, urban heat 
dynamics, and soil composition. Integrated with GIS, they boost the capacity to 
analyze, visualize, and interpret complex environmental data, facilitating spatially 
explicit and temporally dynamic assessments.
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Sophisticated data acquisition platforms—from satellites to UAVs—collect vast 
amounts of environmental data and transform them into implementable actions 
through advanced processing techniques, including machine learning algorithms. 
These advancements have expanded the range of applications, such as land cover 
analysis, water quality assessment, urban heat island studies, and emerging areas 
like air quality monitoring and disaster management. The synergy between remote 
sensing and GIS amplifies the utility of both technologies, supporting evidence-based 
decision-making, global monitoring capabilities, rapid responses to environmental 
changes, and cost-effective assessments. Looking ahead, advancements in sensor 
technology, artificial intelligence, and big data analytics promise to further advance 
the capabilities of remote sensing in environmental monitoring. Developing more 
sophisticated sensors, improved data processing algorithms, and integration with 
emerging technologies like the IoT will lead to more detailed, accurate, and timely 
environmental visions. However, realizing the full potential of these technologies 
requires addressing challenges related to data accessibility, interoperability, capacity 
building, and ethical considerations in data use. As remote sensing technologies 
continue to evolve, they will play an increasingly crucial role in sustainable resource 
management, climate change mitigation and adaptation, and biodiversity conserva-
tion. It is imperative for researchers, practitioners, and policymakers to stay abreast 
of these advancements and effectively integrate the wealth of information provided 
by remote sensing into decision-making processes, thereby contributing to more 
effective and sustainable environmental management practices. 
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Chapter 2 

Monitoring Snow Cover and Glacially 

Impounded Lakes in the Uttarakhand 

Himalayan Watershed Gori Ganga 

by Using Geospatial Applications 

D. S. Parihar 

Abstract The snow cover of the fragile and youngest folded mountain chain known 

to have the highest water tower on the earth, viz., the Himalayan is decreasing steadily 

due to worldwide warming. There is a necessary study the pattern of spatiotemporal 

dynamics in different Himalayan watersheds. The present objective and results of 

the study delivers a pattern and rate of spatiotemporal change of an Uttarakhand 

Himalayan watershed (ex. Gori Ganga) which is a major tributary river as well as 

watershed of the Kali River (Sharda River) that makes a boundary between India and 

Nepal. Present research analysed the NDSI for showing the snow cover delineation 

area. The study refers to mapping and monitoring the dynamics of snow cover from 

1990 to 2022 and rapidly developed glacially impounded lakes over the study area. 

The study will help to determine snow and glacial lakes inventory. It is kinetic change 

rate and also useful to international level studies on SCCD and the risk of GLOF. 

The study reveals that in 1990, about 30.97% of the Gori Ganga basin was under 

snow cover, while in 2022, only 10.99% was found. If this depletion rate of snow 

cover continues, the study advocates that there shall be a finished snow cover area in 

the Gori Ganga basin before 2040. Therefore, there is an urgent need for mitigation 

of the depletion of snow cover area rapidly for the long-term survival of Himalayan 

glacial-fed rivers. 

Keywords NDSI · Snow/ice cover and line · Glacial lakes · GLOF · Global 

warming · Geospatial application 
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GIS Geographical information system 

GLOF Glacial lake outburst floods 

GPS Global positioning system 

IPCC Intergovernmental panel on climate change 

MoFE Ministry of Forest and Environment 

NDSI Normalized difference snow index 

NDVI Normalized difference vegetation index 

NSIDC National snow and ice data center 

OLI Operational land images 

RS Remote sensing 

SCCD Snow cover change detection 

TIRS Thermal infrared sensors 

TM Thematic mapper 

USGS United States geological survey 

UTM Universal transverse mercator 

WGM World glacier monitoring 

2.1 Introduction 

Compared to much larger ice caps, glaciers are found in milder environments where 

most of their surface is subject to annual ablation, making glaciers particularly vulner-

able to climate change and a visible indicator of global warming (Wouters et al. 

2019). Observational records of IPCC (2013), suggest above-average warming of 

Himalayan Mountain (~ 0.9–1.6 °C), the global average warming (0.85 °C) over 

the last century (Bhutiyani 2016). The widespread increase in surface temperature 

(Diodato et al. 2012) and changes in precipitation regime (Negi et al. 2018) in the  

Himalayan region have caused the thinning and retreat of glaciers (Bolch et al. 

2012; IPCC  2013). Kumar et al. 2008 study present that in the Alaknanda Valley 

(Western Himalaya) the mean annual temperature has increased by 0.150 °C from 

1960 to 2000. Bhutiyani et al. (2007) suggest a temperature increase of about 1.60 °C/ 

100 years in the North-western Himalayan region over the past century, which is in 

close agreement with the 2013 IPCC report prediction of the rise in global average 

temperature. 

The generalized retreat of glaciers in the regions of the Himalayas, the Alps, etc. 

towards Antarctica and the Arctic is an unmistakable indicator of global warming 

(IPCC 2013). WGM (2018) service monitors glacier mass balance using a global 

reference glacier set with more than 30 years of observations in 19 mountain regions 

from 1970 to 2018, the results of which are based on a subset of glaciers, showing 

that the cumulative ice loss since 1970 is 21.1 m of water equivalent. NSIDC (2020), 

reports that snow cover covers an average of about 46 million km2 of the Earth’s 

surface, with about 45.32 million km2 (98.52%) of the Earth’s snow cover located in 

the northern hemisphere. The extent of snow in the northern hemisphere is divided
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into two geographical regions: the northern hemisphere has about 28.84 million km2 

(62.69%) and Eurasia has 16.48 million km2 (35.83%). Suggestions after studied by 

using satellite images that nearly 67% of Himalayan glaciers have retreated (Ageta 

and Kadota 1992). 

Revenga et al. (2003) studied the great rivers of Central Asia depend on the 

Himalayas as the source of water (for drinking, sanitation, irrigation etc.) for more 

than 1200 million people. The highest water tower in the world is very rich in glaciers 

and snow. The MoFE New Delhi (SGIM 2010) reveals that the three basins viz., the 

Indus, Ganga and Brahmaputra put together have 71,182.08 km2 of glaciated area 

with 32,392 numbers of glaciers. Of these, 16,049 glaciers occupied 32,246.43 km2 

of the glacier-covered area in the Indus River basin; 18,392.90 km2 of the glaciated 

area of 6237 glaciers must be occupied by the Ganga River basin; and 20,542.75 km2 

of the glaciated area must be occupied by 10,106 glaciers in the Brahmaputra River 

basin. Of the 2767 glaciers monitored over the three Himalayan basins, 2184 are 

retreating at an average rate of 3.75%, 435 are advancing, and 148 glaciers exhibit 

no change. For a period between 1990 and 2001, retreat is found to be higher in 

Spiti and Alaknanda basins, even though both basins are located in different climatic 

zones. 10% losses were observed for glaciers having an extent higher than 15 km2 

for the period 1962 and 2001/2002. Similar trend was observed for a period between 

2001/2002 to 2007, indicating an influence of glacier size on retreat. According to 

Parihar and Rawat (2021), the distribution of snow cover in 1990 was about 30.97% 

(678.87 km2), in 1999 about 25.77% (564.92 km2) of the Gori Ganga watershed 

area was covered with snow while in 2016 snow cover was only detected at 15.08% 

(330.44 km2) and data suggest that about 348.43 km2 snow cover area has been 

converted into the non-snow cover area at an average rate 13.40 km2/year from 1990 

to 2016. At the regional scale and level of different Himalayan valley glaciers, snow 

sheets has an impact on the local climate and the availability of water resources for 

drinking, livelihood, domestic, agriculture, industry uses, etc. (Konig et al. 2001; 

Wang and Li 2003; Kargel et al. 2005). 

According to Fairbridge (1968) all lakes originating from present or past glaciers, 

in continental ice sheets, mountain and valley glaciers are described as glacier lakes. 

Bolch et al. (2012), studied have shown the twentieth century has had a significant 

impact on glaciers as well as surrounding environments due to global warming and 

climate change in the Himalayas. Thus, in response to global warming and climate 

change, the volume and number of potentially hazardous moraine-dammed lakes and 

glacial lakes caused for GLOF in the different glaciers and parts of the Uttarakhand 

Himalaya have increased (Parihar 2022; Richardson and Reynolds 2000; Quincey 

et al. 2005; Gardelle et al. 2011; Raj et al. 2013). 

This research will highlight the temporal changes and signature of global warming 

on snow cover areas and glacial lakes (Fig. 2.1) in the Gori watershed. Main aims of 

this survey are to study the Himalayan watershed, which encompass the following: 

Understanding the impact of global warming on snow cover area and glacier lakes. 

Status, dynamics and future projections of snow cover area and increasing glacial 

lakes in the glacier region of the study area which is an alarm for GLOF. Study 

and mapping with the help of RS and GIS of snow cover area delineation, snow
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Fig. 2.1 Graphical abstract of the study 

cover dynamics, increasing glacial lakes and other uses in the study area. Mapping 

of glaciers via manual digitization of glacier outlines (Hall et al. 1992), NDSI based 

snow cover estimation (Dozier, 1989; Hall et al.  1995; Winther and Hall 1999; 

Silverio and Jaquet 2005). Earlier studies con ducted to examine the signature of 

global warming in the study area concluded that the dynamics of vegetation lines 

(Parihar et al. 2021), timberlines (Parihar 2021a), snowlines (Parihar 2021b), and 

snow cover (Parihar and Rawat 2021) by using geospatial technology with NDVI 

and NDSI method in the Gori Ganga watershed were dynamic. 

2.2 Extension: Study Area 

The Central Himalayan basin, viz., Gori Ganga (29° 45′ 0′′ N to 30° 35′ 47′′ N 

latitudes and 79° 59′ 33′′ E to 80° 29′ 25′′ E longitude), encompasses a total area of 

2191.93 km2 elevation varies between 626 to 6639 m in Fig. 2.2 (Parihar 2021c). Total 

population living in the study area is about 40,616 (2011) in 168 different villages. 

In this basin is the internationally known Milam glacier (near Milam Village) from 

where the river Gori Ganga originates. It is a valley glacier that has a complex basin 

belonging to the southeast of the Trisul peak. The Milam Glacier is a major glacier in 

the Kumaon Himalaya, 16.7 km long. It gathers snow from Trishul Peak and seven 

different tributary glaciers and mountain snow-caps in the watershed. The town of 

Munsyari remains one of the last hill stations accessible by the region’s road network. 

The inner villages of Munsyari and Madkote are currently the starting points for many 

inner Himalayan Mountain routes. The town of Munsyari, one of its main attractions, 

offers a stunning view of the high Himalayan Panchachuli. It is an impressive place 

surrounded by the support of unspoiled nature and high mountains.
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Fig. 2.2 Location and extension of the study area, the Gori Ganga basin, Central Himalaya 

2.3 Data Acquaintance and Methodology 

2.3.1 Field Data Collection 

The Garmin GPS etrex20 handheld device was used in a field survey for the collection 

of ground coordinates and Elevation of snow cover line during October 2017, Chhipla 

Kedar Alpine, snow line position was recorded at 29° 56′ 14.94′′ N and 80° 22′ 49.01′′

E with Elevation recorded at 4069 m that had a mean accuracy of 11.38 m. In April 

2018, Thalba Alpine, snow line position was recorded at 29° 58′ 15.58′′ N and 80° 23′

45.02′′ E with Elevation recorded at 3780 m which had a mean accuracy of 13.3 m. 

In May 2019, Charthi Alpine, snow line position was recorded at 29° 59′ 39.37′′ N 

and 80° 24′ 4.81′′ E with Elevation recorded at 3702 m that had a mean accuracy of 

12 m during the field survey, the ground photographic pieces of evidence of snout of 

glacier area (Fig. 2.3) were also recorded and used as a piece of reference information 

for further analysis.
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Fig. 2.3 Charthi alpine at Central Himalaya with clearly visible a, b snow cover area and c, d alpine 

lakes 

2.3.2 Layer Stacking 

Satellite data (Landsat series) has 4–11 bands and every band has containeddifferent 

information about the land cover area. The layer stacking process (all the bands were 

computed in one layer) with the help of Q-GIS 3.4.3 software. 

2.3.3 Data Used and Overview of the Study Design 

The present work was started by downloading and processing Landsat-5 TM and 

Landsat-8 OLI and TIRS images (Table 2.1) for the years 1990, 1999, 2016 and 

2022 (http://earthexplorer.usgs.gov/). For all 3 years, photos have been decided on 

for the November month is pretty cloudless and most snow cowl may be visible 

on this month. Application of ERDAS software is done to do geometric correc-

tions to re-project the original sinusoidal file to geometric lat-long projection, where 

nearest neighbor re-sampling method and images required bands were layer stacked. 

Figure 2.4 presents methodological flow chart.

The study area, i.e., Gori Ganga basin was clipped using its shape file from 

satellite images and the images have been given the base map coordinates, i.e., 

UTM projection, 44 N zone for the purpose to identify the study area in the images, 

the NDSI raster calculated data of 1990 to 2022 (Fig. 2.5) was calculated in Arc

http://earthexplorer.usgs.gov/
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Table 2.1 Specification of data used 

Satellite Band Wavelength (micrometers) Resolution (in m) Path/Row 

LANDSAT-5 Green Band 2 0.52–0.60 30 145/039 

SWIR Band 5 1.55–1.75 30 145/039 

LANDSAT-8 Green Band 3 0.53–0.59 30 145/039 

SWIR Band 6 0.57–1.65 30 145/039 

Fig. 2.4 Methodological flow chart

GIS 10.2.2 software using the NDSI index using the following equation (Hall et al. 

2002): 

NDSI = 
Green−SWIR 

Green + SWIR

NDSI is useful for identifying snow and ice and for distinguishing snow from 

most mounds. This method is generally used for snowpack mapping using satellite 

data (Kulkarni et al. 2006; Gupta et al. 2005; Negi et al.  2008). An NDSI calculation 

threshold value of 0.4 is defined for satellite images from different sensors (Xiao 

et al. 2001) and to manage the mixed zone, the cutoff value was lowered from 0.4 to 

0.1 (Klein et al. 1998).
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Fig. 2.5 Geographical distribution of NDSI values: 1990, 1999, 2016

2.3.4 Data Interpretation 

The year 1990, 1999, 2016 and 2022 snow cover areas were calculated by using NDSI 

formula and snow cover positions were visually interpreted and digitized as polygon 

files in Arc GIS 10.8 software. Areas of each polygon were calculated and compared 

in Microsoft Excel 2019. Snow cover area statistics based on characteristics of the 

terrain were analyzed using average annual values. 

2.4 Result and Discussion 

The results obtained through the analysis of NDSI imagery are diagrammatically 

illustrated in Fig. 2.5 and data is registered in Table 2.2.

2.4.1 Impacts of Global Warming: 

Thus it is necessary to study the different effects of global warming and climate 

change based on the available long-term satellite data over the region. The Central 

Himalayan basin, viz., Gori Ganga is facing many changes in the snow and glacier 

cover area, glacial lakes, etc. The present study on the impacts of global warming on 

snow and glacier cover area and the increase in the number of glacial lakes conducted 

in a Himalayan river basin has wide impacts.



2 Monitoring Snow Cover and Glacially Impounded Lakes … 41

Table 2.2 Measured and projected snow cover area depletion period, rate and area in the Gori 

Ganga basin (Based on Landsat-5 and 8, satellite imageries) 

Data types Year Temporal 

changes 

(in km2) 

Period Years Change from snow to 

non-snow area 

Reference 

in km2 in km2/year 

Measured 1990 678.87 – – – – Parihar and 

Rawat (2021)1999 564.92 1990–1999 9 104.64 11.63 

2016 330.44 1999–2016 17 243.79 14.34 

2022 240.92 2016–2022 6 89.52 14.92 

Projected 2030 116.40 2022–2030 8 124.52 15.56 On the basis 

of depletion 

rate 
2040 0 2030–2040 10 163 16.35

(i) Understanding the impact of global warming in snow cover areas, dynamics on 

snow cover areas which affect glacial cover and help to increase the number of 

glacier lakes. 

(ii) In forecasting the sifting of snow cover area through estimating projection. In 

forecasting the sifting of snow cover area through estimating projection. 

A brief account of the impacts is presented in the following paragraphs. 

2.4.1.1 Dynamics on Snow Cover Area 

Gori Ganga basin was monitored using Indian RS Landsat sensor data for 32 years 

from 1990 to 2022. Results are presented in Fig. 2.6 and Table 2.2. There was 678.87 

km2 (30.97% of total basin area) snow cover in 1990 which was less 240.92 km2 

(10.99%) in 2022.

2.4.1.2 Snow Cover Area Changes Pattern 

Based on Fig. 2.6 and Table 2.2, data reveal that overall during the last 32 years about 

437.95 km2 (19.98%) of the Gori Ganga basin has been converted from a snow cover 

area to a non-snow cover area. 

2.4.1.3 Snow Cover Area Change Rate and Trend 

The amount of shifted snow-covered area and the rate of dynamics trend in the study 

basin were worked out (Fig. 2.6 and Table 2.2). Data reveals that during 1990–2022 

(32 years) about 19.98% area of the Gori Ganga basin area changed from snow cover 

area to non-snow cover area at the average rate of 13.63 km2/year. The pattern of 

32 years of snow cover studies in different periods from 1990 to 2022 reveals that
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Fig. 2.6 Temporal changes in snow cover area in the Gori Ganga basin, Central Himalaya: 1990, 

1999, 2016

there is a strong negative trend of snow cover retreating with global warming. This 

means that the temperature is rising due to global warming and the snow cover area 

is decreasing steadily. 

2.4.2 Predicted Snow Cover Area 

The present study based on 32 years of satellite data from four different years, i.e., 

1990, 1999, 2016 and 2022 provides the present status and historical changes of 

the snow cover area because the present study reveals that the Gori Ganga basin 

experienced snow cover area is decreasing year by year. The future decreasing status 

of the snow cover area, snow cover depletion area and rates of depletion was projected 

for the years 2030 and 2040 based on these four years’ data (Table 2.2) using linear 

regression. These data reveal that the snow cover area was depleting at the rate of 

11.63 km2/year in the 1990s which shall be increased at the rate of 16.35 km2/year 

during 2030–2040. Based on these data it can be stated that the snow cover area 

shall be completely loss in 2040 in the Gori Ganga basin. Figure 2.7 is a graphically 

presented linear regression of measured and projected temporal data in the study area. 

The CORREL statistical method test showed that the trend of the upward shifting 

amount and rate of snow cover from 1990 to 2040 was negative relation (− 0.30) 

where slope is − 0.0077 and intercept is 15.74. Here, in the test, we found that the 

relation variables showed the snow cover area is shrinking.
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Fig. 2.7 Graphical linear regression representation of temporal dynamics from snow to non-snow 

area from 1990 to 2040 

2.5 Signature of Changes in Snow and Glacier Cover 

Long-term more than three decades (1990–2022) satellite data reveals that about 

19.98% area of the study area was lost from snow cover area to non-snow cover area 

at the average rate of 13.63 km2/year due to global warming. Changing climate and 

global warming is likely to increase the need for water and may reduce the supplying 

resources become the snow line has been shifted upward. These data suggest that the 

study area loss is being affected by global warming by which new glacial landforms 

such as ice caves, Moulin and glacial lakes are developing in the region. Figure 2.8 

present some examples of such new developing landforms caused by global warming. 

Examples of newly developed glacial lakes after 2010 are presented in Fig. 2.9. The  

ground photographic pieces of evidence of the largest glacial lake of Gaukha glacier 

area (Fig. 2.10) were captured during the field survey 2019 and used as reference 

information for further analysis. Figure 2.10 showing the largest glacial lake (30° 33′

48.61′′ N 80° 10′ 33.74′′ E, 4877 m) at the terminal point in the east Gaukha glacier. 

Figure 2.11 depicts the distribution of glacial lakes in the Gori Ganga watershed till 

2010 and developed from 2010 to 2023 which is registered in Table 2.3.
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Fig. 2.8 Icebergs falling on Milam glacier is a signature impact of global warming in Milam glacial 

areas in the Gori Ganga basin: a at terminal, b river path along glacier terminal c Moulin and d ice 

bores

2.6 Findings 

The fundamental objective of the present study is to study snow cover dynamics and 

glacial lakes increased due to global warming in the Gori Ganga basin, which also 

includes the study of their patterns, velocities and trends using geospatial applica-

tions. The snow cover area of the basin is depleting steadily due to global warming. 

In 1990 the snow cover area in the basin area was about 30.97% which was found 

10.99% in 2022. These data suggest that on average during the last 32 years (1990– 

2022) about 19.98% of snow cover has been converted into the non-snow cover area 

at the rate of 13.69 km2/year. If their global warming continues, it can be extrap-

olated that the snow cover area in the Gori Ganga basin shall be about 5.31% in 

2030 and completed loss of permanent snow cover in 2040. There was a total of 30 

glacial lakes exist in the region where the largest glacial lakes about 21 found in the
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Fig. 2.9 Newly developed glacial lakes after 2010 in the Gori Ganga basin: a in the Milam glacier 

(in 2019), b at the terminal of the Milam glacier (in 2019), c near snout at Ralam glacier (GEP, 

2020) and d in lower part of Ralam glacier area (2019) 

Fig. 2.10 Gaukha Glacier at Central Himalaya ground truthing of largest glacial lake in the basin 

area
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Fig. 2.11 Distribution of glacial lakes in the Gori Ganga basin till 2010 and developed from 2010 

to 2023: a Lwan and Martoliya b Milam, c Gaukha and d Ralam 

Table 2.3 Number of glacial lakes in the Gori Ganga basin till 2010 and developed during 2010 

to 2023 

S. N. Years Major glacial lakes on different glacier area Total lakes 

Milam Gaukha Ralam Lwan Martoliya 

1 2010 21 Nil 16 Nil 2 39 

2 2023 + 15 + 7 + 9 + 3 + 4 + 38  

Increase no. of lakes 36 7 25 3 6 77

Milam glacier while two glaciers, viz., Gaukha and Lwan were found without any 

glacial lakes till 2010. There were 38 glacial lakes developed due to global warming 

in different glaciers between 2010 to 2023 where the highest lakes were developed 

about 15 in the Milam glacier and 3 glacier lakes found in the Lwan glacier. The 

melting of the permanent snow reservoir, a phenomenon that intensified in the twen-

tieth century, is dragging our planet to iceless. Over the last few decades, steadily 

increasing global temperatures have caused ice sheets’ rapid melting and changing 

snow volume in different spectacles. Due to increase in retreating rate leads to the 

formation of new lakes and the enlargement in diameter and volume of existing ones 

in the Himalayan region. These water bodies created by the melting of glaciers due 

to temperature changes and global warming are known as glacial lakes. This plays a 

crucial role as a freshwater source for rivers in this region. GLOF is types of outburst 

flood caused by the failure of a release of melt water from a moraine-dam due to dam
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failure. They cause for disastrous floods and create huge damage of natural environ-

ment as well loss of lives, livestock, connectivity and property in the downstream 

areas. Figure 2.10 is the dangerous for GLOF in this area. Sattar et al. (2020) studied 

by using satellite imageries of 50 years (1968 to 2018) about Gaukha Glacier lake 

which is largest glacial lake in Gori Ganga basin. A temporal analysis by using a 

hazard assessment of the lake using 1D and 2D hydrodynamic modeling of the lake 

surface shows that the lake has grown more than double its size from 0.10 km2 to 

0.23 km2 and identified the potential for GLOF triggering factors. 

This study is based on Geospatial application using satellite imageries, i.e., 

Landsat-5, Landsat-8 and Cartosat-1. Therefore the study demonstrates that the RS 

and GIS techniques are very useful for the study of the dynamics of snow cover area 

and increased glacial lakes in the Gori Ganga basin. 
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Chapter 3 

To Track Spatial and Temporal Patterns 

of Change of Forests with a Case Study, 

Western Ghat, India 

Komal Rai, Gulab Singh, and S. Sreelekshmi 

Abstract Monitoring forests using Synthetic Aperture Radar (SAR) imagery is 

crucial for tracking spatial and temporal changes, aiding in resource management 

and climate change analysis. SAR’s ability to penetrate cloud cover and provide 

consistent, high-resolution data makes it an essential tool for forest monitoring. Our 

study outlines a methodology for detecting forest changes using SAR, with a case 

study on the Western Ghats. The approach integrates SAR image acquisition, pre-

processing and indices to assess forest cover and health. Change detection algorithms 

applied to temporal SAR data map forest changes over short period of time. In the 

case study, Sentinel-1C SAR data from April and October 2023 was used for its 

high temporal resolution. Pre-processing included radiometric calibration, speckle 

filtering, and terrain correction. Temporal analysis employed the Radar Vegetation 

Index (RVI), adapted from NDVI, to detect changes. Significant deforestation events 

were observed, especially in correlation with increased deforestation periods in the 

Upper Western Ghats. Spatial analysis revealed deforestation hotspots near rivers 

and roads, indicating the impact of human infrastructure. Seasonal trends showed 

higher deforestation rates during the dry season, highlighting easier access to remote 

areas. The integration of SAR data with advanced analytical techniques provides a 

robust framework for monitoring forests, offering valuable insights for policymakers 

and conservationists. Hope this chapter helps in basic understanding of SAR imagery 

pre-processing and its application in forest change studies. 
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3.1 Introduction 

Forest ecosystems are critical for maintaining ecological balance and supporting 

biodiversity, yet they remain highly vulnerable to disturbances such as forest fires. 

These fires, often exacerbated by climate change and human activities, pose signif-

icant threats to ecological stability and biodiversity-rich regions like the Western 

Ghats and Uttarakhand in India (Gupta et al. 2018; Prasanna Kumar et al. 2013). 

Accurately assessing and mapping the impacts of forest fires is essential for effec-

tive management and conservation strategies. Remote sensing technologies, particu-

larly the integration of multispectral and Synthetic Aperture Radar (SAR) data, have 

proven effective in monitoring forest fire dynamics and assessing burnt area severity 

(Engelbrecht et al. 2017; Suresh et al. 2018). Advanced methodologies, such as fuzzy 

overlay analysis and Sentinel datasets, offer innovative approaches to risk zonation 

and post-fire assessment, enabling researchers and policymakers to mitigate fire risks 

and plan recovery measures (Rai et al. 2022; Imperatore et al. 2017). This study builds 

on these advancements to explore spatial and temporal patterns of forest fire impacts, 

contributing to a deeper understanding of their ecological consequences. 

Tracking the spatial and temporal patterns of forest change is essential for under-

standing the complex dynamics of ecosystems, managing natural resources, and 

addressing global environmental challenges, particularly climate change. Forests are 

critical for maintaining ecological balance; they act as major carbon sinks, regulate 

water cycles, prevent soil erosion, and provide habitat for a wide range of species 

(FAO 2020; Bonan 2008). Despite their importance, forests worldwide face severe 

threats from deforestation, degradation, and land-use changes driven by human activ-

ities like agriculture, infrastructure development, and resource extraction (Hansen 

et al. 2013). Accurately monitoring forest changes over time and across landscapes 

is vital for developing effective conservation strategies and promoting sustainable 

land management. 

The ability to monitor these changes has significantly improved with the advent of 

advanced remote sensing technologies, particularly Synthetic Aperture Radar (SAR) 

imagery. SAR has become a preferred tool for forest monitoring due to its unique 

capabilities. Unlike optical sensors that rely on visible light and are hindered by cloud 

cover and weather conditions, SAR operates in the microwave spectrum, allowing it 

to penetrate through clouds and collect data regardless of weather or daylight (Balzter 

2001; Henderson and Lewis 1998). This makes SAR particularly useful in tropical 

and mountainous regions, where clouds are prevalent, and continuous monitoring is 

otherwise challenging. 

SAR imagery provides high-resolution data that is valuable for detecting forest 

structure, changes in biomass, and patterns of deforestation or degradation (Petar et al. 

2025). The ability to track these changes over time enables researchers and policy-

makers to gain insights into the health and extent of forests, identify areas of concern, 

and implement timely interventions (Enmanuel et al. 2024). SAR’s consistency in 

data acquisition also ensures that temporal analyses can be conducted effectively, 

enabling the detection of gradual or rapid changes in forest cover.
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This chapter presents a comprehensive methodology for tracking forest changes 

using SAR imagery, focusing on both spatial and temporal dynamics. The approach 

combines advanced image processing techniques and machine learning algorithms 

to extract meaningful insights from SAR data. Key steps include SAR image acqui-

sition, pre-processing to reduce noise and enhance signal quality, identify forest 

cover, and change detection over time (Zilin et al. 2024). This methodology offers a 

robust framework for understanding how forested landscapes evolve and how human 

activities and environmental factors drive these changes. 

In the case study, Sentinel-1C SAR data was used, spanning a period from April 

and October 2023. Sentinel-1C was chosen for its high temporal resolution, which 

is crucial for capturing the rapid and seasonal changes occurring in this region (ESA 

2023). Pre-processing steps included radiometric calibration, speckle filtering to 

remove noise, and terrain correction to ensure accurate spatial representation (Wei 

et al. 2025). Temporal change detection was performed using a modified version of 

the Normalized Difference Vegetation Index (NDVI) known as the Radar Vegetation 

Index (RVI), which is adapted for SAR data (Chang et al. 2018). This index provided 

a valuable metric for assessing forest health and detecting changes in vegetation cover 

over time. 

Through this integrated approach, the chapter highlights the importance of SAR 

imagery in understanding forest dynamics in forested landscapes like the Western 

Ghats. 

3.2 Study Area 

The Western Ghats, as shown in Fig. 3.1, also known as the Sahyadri Hills, is one of 

the most important biodiversity hotspots in the world, stretching along the western 

coast of India. It runs for approximately 1600 km through six Indian states—Gujarat, 

Maharashtra, Goa, Karnataka, Kerala, and Tamil Nadu—spanning an area of around 

160,000 km2. The mountain range plays a critical role in regulating the climate of 

peninsular India and significantly influences the monsoon weather patterns that are 

vital for the region’s agriculture and water resources.

The Western Ghats experience a range of climatic conditions, from tropical and 

subtropical to temperate in the higher altitudes. Rainfall is high on the western slopes 

due to the monsoons, while the eastern slopes are drier, leading to varied forest types 

on either side. The region’s altitudinal variation, ranging from sea level to over 

2600 m at the highest peak (Anamudi), results in a diverse range of ecosystems and 

microclimates. These variations support a wide range of flora and fauna, contributing 

to the ecological richness of the region. 

The Ghats are also the source of numerous rivers, including the Godavari, Krishna, 

and Kaveri, which provide water to millions of people in southern India. The region’s 

forests play a crucial role in regulating the hydrological cycle, contributing to 

groundwater recharge, preventing soil erosion, and reducing the risk of floods.
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Fig. 3.1 Study area of Western Ghats

3.3 Methodology 

Pre-processing of SAR images involves several crucial steps to enhance data quality 

and accuracy. Initially, radiometric calibration corrects for sensor-specific variations, 

ensuring consistent signal interpretation. This is followed by geometric correction, 

aligning the SAR image with ground coordinates, often using a digital elevation 

model (DEM) to account for terrain distortions. Speckle noise reduction is applied to 

minimize interference from radar signal scattering, improving image clarity. Finally, 

terrain correction is performed to rectify distortions caused by varying elevation. 

These pre-processing steps as depicted in Fig. 3.2, collectively refine the SAR data, 

making it suitable for accurate analysis and interpretation in applications like land 

monitoring and environmental studies.
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Fig. 3.2 Flowchart for pre-processing 

3.3.1 Data Acquisition 

In our study first step is Data acquisition; to acquire data from Sentinel-1C, as shown 

in Fig. 3.3 one can utilize the Alaska Satellite Facility (ASF) Data Search tool, 

which offers access to Synthetic Aperture Radar (SAR) data. The process begins by 

navigating to the ASF Data Search portal and selecting Sentinel-1 from the available 

missions. Users can specify parameters such as area of interest, acquisition dates, 

and polarization modes. After defining these criteria, the search tool generates a list 

of relevant data products. Each dataset can be previewed, and users can download 

them in formats compatible with analysis tools like SNAP or GIS software.

3.3.2 Data Visualization and Polarization Orientations 

Data visualization in synthetic aperture radar (SAR) is critical for interpreting 

and analyzing complex datasets. SAR uses different polarization orientations (like 

horizontal-horizontal (HH), vertical–vertical (VV), and cross-polarizations like HV 

or VH) to capture distinct properties of the Earth’s surface. Visualizing these polar-

izations helps in distinguishing between various surface types, such as vegetation, 

water, and urban structures. For instance, dual- and quad-polarization SAR data 

provide insights into forest density, soil moisture, or glacier dynamics. Effective visu-

alization of polarization orientations enhances pattern recognition, enabling better
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Fig. 3.3 Data acquisition from ASF portal

Fig. 3.4 Data visualization on SNAP 

understanding of natural phenomena and improving decision-making in environ-

mental monitoring, disaster management, and other applications. Figure 3.4 helps us 

visualize the upper western ghats raw image. 

3.3.3 Apply Orbit File 

Applying an orbit file in satellite data processing as shown in Fig. 3.5, involves inte-

grating precise satellite position and velocity information into remote sensing data 

analysis. Orbit files, typically derived from tracking data, provide crucial details about
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Fig. 3.5 Applying orbit file 

the satellite’s trajectory during data acquisition. By incorporating these files, analysts 

can correct for satellite motion, ensuring accurate georeferencing of the imagery. 

This correction is essential for applications such as change detection, mapping, 

and monitoring. Accurate orbit information improves the alignment of satellite data 

with ground truth, enhancing the reliability of analysis and ensuring that the spatial 

resolution and positioning of features in the images are precise. 

3.3.4 Calibration 

Calibration in SAR is essential for ensuring accurate and reliable measurements of 

the Earth’s surface. It involves adjusting SAR data to account for systematic errors 

and variations in sensor performance. This process includes radiometric calibration 

as seen in Fig. 3.6, which corrects for signal intensity discrepancies caused by factors 

like sensor drift or environmental conditions, and geometric calibration, which aligns 

the data to the correct spatial coordinates. Calibration also addresses noise reduction 

and compensates for any distortions, improving the quality and consistency of SAR 

images. Proper calibration enhances the ability to interpret data accurately, crucial 

for applications such as environmental monitoring and disaster management.

3.3.5 Multilooking 

Multilooking in SAR as shown in Fig. 3.7, is a processing technique used to improve 

image quality by averaging multiple radar looks or echoes to reduce speckle noise and 

enhance signal-to-noise ratio. This process involves combining several adjacent radar



58 K. Rai et al.

Fig. 3.6 Radiometric calibration

Fig. 3.7 Multi looking 

range cells into a single, larger cell, effectively smoothing out noise while preserving 

the overall image structure. Multilooking also reduces spatial resolution but increases 

the clarity and interpretability of the image. By averaging different looks, multi-

looking helps in better distinguishing features and improving the accuracy of land 

cover classification, object detection, and other SAR-based analyses. 

3.3.6 Speckle Filtering 

Speckle filtering in SAR is a technique used to reduce noise and improve image 

quality. Speckle, a granular noise caused by the interference of radar waves scattered
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Fig. 3.8 Speckle filter 

by the rough surface, can obscure meaningful details. Filtering methods, such as the 

Lee, Frost, or Kuan filters, work by averaging pixel values within a neighborhood 

while preserving edges and important features. This process smooths out the speckle 

noise while retaining the structural integrity of the image, enhancing the clarity of 

features like land cover, vegetation, and urban structures. Effective speckle filtering 

is crucial for accurate interpretation and analysis of SAR data as shown below in 

Fig. 3.8. 

3.3.7 Range Doppler Terrain Correction 

Range-Doppler terrain correction in SAR processing (in Fig. 3.9) adjusts for distor-

tions caused by varying terrain elevations. SAR images can suffer from geometric 

inaccuracies due to the slant range geometry and Earth’s topography. The range-

Doppler method involves correcting these distortions by mapping the SAR image 

onto a reference digital elevation model (DEM). This process accounts for variations 

in the radar’s line-of-sight and terrain relief, aligning the radar data to true ground 

positions. The correction ensures that features in the SAR image accurately represent 

their geographic locations, enhancing the image’s usability for applications such as 

topographic mapping, land use analysis, and environmental monitoring.
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Fig. 3.9 Terrain correction 

3.3.8 RVI and NDVI 

The Radar Vegetation Index (RVI) and the Normalized Difference Vegetation Index 

(NDVI) are both used to assess vegetation health and cover, but they utilize different 

types of remote sensing data. 

NDVI, derived from optical satellite imagery, calculates vegetation health by 

measuring the difference between near-infrared (NIR) and red reflectance. It is 

expressed as 

NDVI = 
NIR−Red 

NIR + Red 

Healthy vegetation reflects more NIR light and absorbs more red light, resulting 

in higher NDVI values. NDVI is widely used in agriculture, forestry, and climate 

studies for monitoring vegetation growth, drought effects, and land cover changes. 

In contrast, the Radar Vegetation Index (RVI) uses synthetic aperture radar (SAR) 

data, which is sensitive to vegetation structure and moisture content. 

RVI = 
4 ∗ VH 

VV + VH 

SAR systems measure the backscattered radar signal, which varies with the density 

and structure of the vegetation. The RVI is calculated from SAR polarimetric data, 

reflecting the vegetation’s radar backscatter characteristics. It is particularly useful 

in areas with frequent cloud cover, where optical sensors may be limited. RVI can 

offer insights into vegetation biomass, soil moisture, and structural changes, comple-

menting optical indices like NDVI and providing valuable information for monitoring 

and managing vegetation in diverse environmental conditions.
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3.4 Results and Discussion 

3.4.1 Pre-disturbance RVI and NDVI 

Before forest disturbances occur, vegetation indices like the Radar Vegetation Index 

(RVI) and Normalized Difference Vegetation Index (NDVI) serve as key indicators 

of healthy, dense forest cover. The RVI, derived from radar backscatter, reflects the 

structural integrity and biomass of vegetation. Dense forests with robust structures 

exhibit high RVI values due to strong radar returns from leaves, branches, and trunks. 

Similarly, NDVI, calculated from the near-infrared (NIR) and red reflectance, shows 

high values in healthy forests because of the strong NIR reflectance and low red-light 

absorption by chlorophyll. 

Monitoring temporal changes in these indices enables the detection of forest 

disturbances and degradation. Decreasing trends in RVI often signal the loss of 

vegetation structure, while reduced NDVI values indicate diminished photosyn-

thetic activity and canopy cover. The combined analysis of RVI and NDVI provides 

a comprehensive picture of forest health, capturing structural and physiological 

changes. 

In April 2023, observations from the Upper Western Ghats revealed a consistent 

trend between RVI and NDVI values, with both indices indicating dense, healthy 

vegetation. This alignment demonstrates their reliability in assessing forest condi-

tions and highlights the region’s ecological stability before disturbances. The parallel 

trends in these indices underline their complementary role in monitoring forest 

ecosystems (Fig. 3.10). 

Fig. 3.10 April 2023 pre-disturbance indices a RVI and b NDVI
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3.4.2 Post-disturbance RVI and NDVI 

Post-forest disturbances, indices like the Radar Vegetation Index (RVI) and Normal-

ized Difference Vegetation Index (NDVI) serve as crucial indicators for assessing 

changes in vegetation health and structure. These indices typically show a marked 

decline in response to disturbances such as deforestation, fires, or storms. The RVI, 

derived from radar backscatter, decreases due to the loss of vegetation structure, 

canopy cover, and biomass, which significantly reduce the radar signal’s ability to 

scatter within the vegetation. Similarly, NDVI, which relies on the contrast between 

near-infrared (NIR) light reflected by healthy vegetation and red light absorbed during 

photosynthesis, diminishes as the proportion of healthy vegetation declines. 

This trend is evident in the upper Western Ghats during October 2023, as illustrated 

in Fig. 3.11. Both RVI and NDVI values show a significant reduction, reflecting the 

impact of recent disturbances. The decline in RVI indicates structural degradation, 

while the reduced NDVI values signal a loss of photosynthetically active vegetation. 

Such analyses are essential for quantifying the spatial and temporal extent of distur-

bances, enabling targeted restoration efforts. The combined interpretation of RVI and 

NDVI provides a robust framework for understanding vegetation dynamics post-

disturbance, supporting sustainable forest management strategies in ecologically 

sensitive regions. 

Forest disturbances in the Upper Western Ghats, a biodiversity hotspot, have 

significant ecological implications. Using synthetic aperture radar (SAR) imagery, 

these disturbances can be detected and analyzed, even under cloudy conditions 

common in tropical regions. SAR provides detailed insights into changes in forest 

structure, biomass loss, and land cover alterations, which are key indicators of 

disturbances like deforestation, forest degradation, or human encroachment. 

Processing SAR imagery for this analysis involves several steps. First, radiometric 

calibration ensures consistent radar backscatter measurements. Geometric correction 

aligns the imagery with geographic coordinates, often using digital elevation models 

(DEMs) to account for terrain variations. Speckle noise reduction enhances image

Fig. 3.11 October 2023 post disturbance indices a RVI and b NDVI 
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clarity by minimizing radar signal scattering. Terrain correction further improves 

spatial accuracy by correcting distortions caused by elevation changes. 

Once pre-processed, Synthetic Aperture Radar (SAR) data becomes a powerful 

tool for monitoring forest ecosystems, particularly when combined with indices such 

as the Radar Vegetation Index (RVI). RVI is sensitive to structural changes within the 

forest, as it captures variations in radar backscatter caused by canopy cover, biomass, 

and vegetation density. Post-disturbance, RVI values typically decrease, signalling a 

loss of forest structure due to events like deforestation, fires, or severe storms. These 

structural changes are invaluable for assessing the magnitude and spatial extent of 

disturbances. 

To further validate these findings, SAR-based results can be cross-referenced with 

optical data, such as the Normalized Difference Vegetation Index (NDVI). NDVI, 

derived from the differential reflectance of near-infrared (NIR) and red light, is an 

established measure of vegetation health and density. Like RVI, NDVI also shows a 

significant decline post-disturbance, as the loss of healthy, photosynthetically active 

vegetation reduces the amount of NIR light reflected. This dual analysis of RVI 

and NDVI enables researchers to comprehensively evaluate both the structural and 

physiological impacts of forest disturbances. 

As depicted in Fig. 3.12, the integration of SAR and optical data reveals a marked 

decline in both RVI and NDVI values in the Upper Western Ghats following a distur-

bance event in October 2023. The RVI highlights structural degradation, while the 

NDVI reflects the loss of vegetative vigor. This combined approach ensures greater 

accuracy and reliability in monitoring, as it leverages the all-weather capability of 

SAR with the high sensitivity of optical indices. 

Such integrated methodologies are crucial for conservation planning, as they allow 

for detailed assessments of disturbance impacts, identification of vulnerable areas, 

and informed decision-making to promote ecological restoration and sustainable 

forest management in biodiversity-rich regions like the Western Ghats. 

The table illustrates the changes in NDVI and RVI values between April and 

October 2023 in the study area. NDVI values, which range from − 0.091 to 0.471 in 

April, show a slight increase to − 0.1 to 0.511 in October, indicating seasonal varia-

tions in vegetation health. Meanwhile, RVI values remain relatively stable, ranging

Fig. 3.12 Values of indices pre- and post-disturbance 2023 
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from 0.29 to 1.1 in April and 0.31 to 1.1 in October, reflecting minimal structural 

changes in forest cover. These trends suggest that while vegetation health fluctuates 

seasonally, the overall forest structure remains consistent, underlining the utility of 

combined NDVI and RVI indices for comprehensive forest monitoring. 

3.5 Conclusion 

In conclusion, this study underscores the critical role of Synthetic Aperture Radar 

(SAR) imagery in monitoring forest changes, particularly in biodiversity-rich and 

ecologically sensitive regions like the Western Ghats. By leveraging SAR’s ability to 

penetrate cloud cover and provide consistent, high-resolution data acquisition regard-

less of weather or daylight, the study effectively captures the spatial and temporal 

dynamics of deforestation. The integration of advanced pre-processing techniques 

and indices like the Radar Vegetation Index (RVI) offers a robust framework for 

detecting and analyzing forest changes over time, enabling accurate assessments of 

structural and physiological impacts on vegetation (Mullissa et al. 2024; Le et al.  

2019). 

The case study utilizing Sentinel-1C SAR data from April to October 2023 demon-

strates the utility of high-temporal-resolution datasets in identifying seasonal and 

anthropogenic patterns of forest disturbance. The findings reveal significant defor-

estation hotspots near rivers and roads, as well as heightened disturbance rates during 

the dry season, which align with increased human accessibility to forested areas. Such 

insights highlight the need for targeted conservation measures and sustainable land 

management strategies (ESA 2023). 

This chapter emphasizes the potential of SAR technology, combined with 

advanced analytical techniques, to support sustainable forest management and 

climate change mitigation. By providing actionable insights for policymakers and 

conservationists, it lays a solid foundation for future applications of SAR in forest 

monitoring and environmental management. 
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Abstract The rapid development of remote sensing technology has dramatically 
advanced our ability to monitor and examine changing environments precisely. 
Global satellite technologies, led by space agencies like NASA, ESA, and JAXA, 
along with private enterprises, advances climate monitoring, disaster resilience, and 
oceanic carbon sequestration, promoting environmental sustainability through inno-
vative missions and shared data. This chapter explores the nuances and uses of 
thermal, hyperspectral, and multispectral infrared imaging in environmental assess-
ment. Multispectral imaging, which collects data in many specific spectral bands 
using sensors like Landsat, Sentinel series, and others, is essential for classifying 
various land cover types and assessing vegetation indices. Characterized by the ability 
to collect records in a mass of contiguous spectral bands, hyperspectral imaging 
enables the identification and classification of specified material, enabled by sensors 
that include Hyperion, AVIRIS, and CASI. Using sensors like drones and satel-
lites, thermal infrared imaging, which quantifies the thermal radiation emitted, is 
vital for monitoring Earth’s temperatures and emissivity. The chapter will begin by 
explaining the essential standards of these imaging technologies, accompanied by 
an in-depth discussion on methodologies consisting of data acquisition techniques, 
preprocessing steps like radiometric and atmospheric corrections, and advanced 
record fusion methods that integrate multiple imaging modalities for a more suit-
able evaluation. Analytical methods, including spectral unmixing, algorithms, and 
thermal anomaly detection, could be explored. The chapter will then spotlight the 
various imaging technology programs in environmental evaluation. Thermal imaging

Md. K. H. Milu (B) · N. T. Safa · S. Mobaswira · J. A. Tarun · M. Islam · I. Jahan · 
Md. Ashiquzzaman · Md. A. Rahman · Md. F. Rahman · H. M. Abdullah (B) 
GIS and Remote Sensing Lab, Bangabandhu Sheikh Mujibur Rahman Agricultural University, 
Gazipur, Bangladesh 
e-mail: khalid.official.98@gmail.com 

H. M. Abdullah 
e-mail: hasan.abdullah@bsmrau.edu.bd 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
V. Saritha et al. (eds.), Remote Sensing for Environmental Monitoring, 
https://doi.org/10.1007/978-981-96-5546-5_4 

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5546-5_4&domain=pdf
mailto:khalid.official.98@gmail.com
mailto:hasan.abdullah@bsmrau.edu.bd
https://doi.org/10.1007/978-981-96-5546-5_4


68 Md. K. H. Milu et al.

helps detect plant stress and water content; on the other hand, multispectral and 
hyperspectral data are used in vegetation and forest monitoring to evaluate vegeta-
tion health, identify species, and estimate biomass precisely. These technologies also 
monitor indicators including algal blooms, turbidity, and chlorophyll concentration 
to measure the quality of the water; thermal imaging detects thermal pollution and its 
consequences on aquatic ecosystems widely. Hyperspectral imaging describes soil 
features, including its organic matter and mineral content, whereas multispectral and 
thermal data mainly evaluate the ground cover’s erosion, desertification, and deteri-
oration. This chapter will also discuss the use of multispectral and hyperspectral data 
to evaluate the effects of climate change on various ecosystems, as well as the inves-
tigation of urban heat islands and their prevention through thermal infrared imaging, 
which is a very concerning issue nowadays. The utility and effectiveness of these 
technologies will be validated through real-world case studies that include urban 
heat island research in major cities, water assessment in water bodies, and defor-
estation monitoring in forest areas. Along with discussing the capacity of future use 
for imaging technology, the chapter will also discuss the critical present issues in 
remote sensing, including the large extent of data, processing complexity, and sensor 
constraints. Increasing environmental monitoring capabilities involves the advent of 
sensors with better resolutions, more robust data analytics, and the integration of 
artificial intelligence. This chapter aims to provide a thorough overview of multi-
spectral, hyperspectral, and thermal infrared imaging in a categorized manner. It 
will also highlight the essential function these technologies play in improving our 
comprehension and management of environmental resources and their ability to cope 
with new environmental problems. 

Keywords Remote sensing ·Multispectral imaging · Hyperspectral imaging ·
Thermal infrared imaging · Environmental monitoring · Vegetation assessment ·
Climate change · Urban heat islands 

4.1 Introduction 

Environmental monitoring has traditionally been done using conventional methods 
such as manual field surveys, and basic remote sensing. Although these methods have 
served as the foundation for the collection of environmental data, they are becoming 
less suited to address the evolving demands of recent times. In-situ measurements 
are precise, but they are time-consuming and labor-intensive (Günther et al. 1995; 
Mertikas et al. 2021). Human errors will likely occur in manual field surveys useful for 
ground truthing purposes and cover only small areas (Johnson et al. 2015). Although 
spatial coverage was improved to some degree by the old remote sensing methods, it 
was still limited by low-resolution imagery; hence, use for small-scale environmental 
monitoring became impossible (Cohen and Goward 2004; Wang et al. 2021). There-
fore, in these rapidly changing ecosystems, the methods often fail to provide high-
resolution data on time for large-scale environmental management because they
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are usually old. The slow data collection process of traditional approaches also 
contributes greatly to the limitations that affect real-time decision-making. Further, it 
takes time to manually collect field data, and by the time the analysis starts; environ-
mental conditions might have changed (Lillesand et al. 2015). Indistinctly, it is hard to 
track inaccessible and vast lands like mountains or huge water masses because of the 
little spatial resolution in conventional remote sensing (Schultz and Engman 2012). 
Therefore, there is a need for superior technologies that can offer quick, correct, and 
extensive environmental information. 

How we monitor our environment has changed over these years predominantly 
due to advancements made with multispectral (MS), hyperspectral (HS), and thermal 
infrared imaging (TIR) techniques. This has led to an improvement in speed, preci-
sion, and scale of environmental monitoring because with them it is possible to 
capture very high-resolution multi-dimensional data instantaneously (Thenkabail 
et al. 2014). Multispectral imaging has evolved to detect slight changes in the envi-
ronment like those linked with different water quality and vegetation health through 
capturing a few spectral bands (Zarco-Tejada et al., 2014). Hyperspectral imaging 
takes this a notch higher by capturing hundreds of spectral bands which help in iden-
tifying minute differences in material properties thus allowing for the rapid detection 
of environmental stressors (Vane and Goetz 1988; Matese et al. 2024). 

Temperature variability data provided by thermal infrared imaging supplements 
the understanding of processes such as surface energy exchange and evapotranspira-
tion. Essentially, these technologies can be said to possess three great advantages over 
others, namely; accuracy like no other means, availability of up-to-date information, 
and extensibility. For example, multispectral and hyperspectral imaging have been 
used to develop better predictive models for assessing vegetation health or tracking 
deforestation. These technologies have the potential to span great distances, allowing 
extensive surveillance that was impossible before this way of doing things. If such 
data is gathered and processed in real-time, it makes it possible for environmental 
officers to take timely measures against new risks regardless if they are climate 
change-dependent or manmade (Fuller et al. 2021; Liu et al. 2023). 

This chapter explores the far-reaching environmental applications of multispec-
tral, hyperspectral, and thermal infrared imaging. This technology has revolution-
ized precision agriculture through improved water usage and crop health monitoring 
(Fakhar and Khalid 2023). It is used in forestry to detect forest degradation and 
monitor carbon sequestration. Additionally, water resources management, urban 
planning, and climate change analysis will be discussed in this chapter thus showing 
how these technologies make it possible for proactive, efficient, and accurate envi-
ronmental planning. Besides that; the application of these technologies in disaster 
management systems including early warning systems before destruction happens 
and post-disaster damage assessments will be given. They are very significant for 
resilience building at the level of ecosystems as well as human societies (Jensen 
2013; Pande and Moharir 2023).



70 Md. K. H. Milu et al.

4.2 Imaging Technologies: Fundamentals and Evolution 

4.2.1 Multispectral Imaging 

Multispectral imagery is widely employed in satellite and airplane-based remote 
sensing, which outperforms conventional broadband visible–spectrum imagery for 
vegetation monitoring in many applications. Such vegetation indices (VIs) which 
incorporate near-infrared portions of the spectrum can therefore provide more exten-
sive information in spectral discrimination between various plant types and growth 
stages. These VIs can be very valuable in the estimation of certain biophysical vari-
ables, such as vegetation productivity or Leaf Area Index (Wehrhan et al. 2016; Sahu 
et al. 2024), as well as for other kind of vegetation classification purposes (Ahmed 
et al. 2017). The use of multispectral images has proven effective in monitoring water 
bodies, and rivers, detecting changes, as well as extracting water features (Dash et al. 
2002). Eutrophication is a scientific terminology that defines algal blooms and associ-
ated results induced through the response of aquatic ecosystems to massive nutrient 
loads. Chlorophyll-a (Chl-a) is the maximum essential photosynthetic pigment in 
phytoplankton organisms, which has been considered a great indicator of nutrient 
enrichment (Agwanda and Iqbal 2019; Singh et al. 2025, 2024). 

The Sentinel-2 MultiSpectral Instrument (S2 MSI) provides precise spatial deci-
sions and distinct spectral bands positioned to assess chlorophyll a, an indication of 
water quality and trophic condition that enables the monitoring of small water bodies. 
The retrieval of phytoplankton chlorophyll-a concentration (chl-a) from remotely 
sensed facts is one of the key problems in aquatic remote sensing. The spectral signa-
ture of chl-a is characterized by robust absorption within the blue (443 nm) and red 
wavelengths (close to 675 nm) and excessive reflectance in green (550–555 nm) and 
red-edge spectrum regions (685–710 nm). These spectral capabilities had been used 
to expand numerous band ratios to quantify chl-a concentration in inland and near-
coastal transitional waters through empirical tactics, imparting timely and accurate 
information (Gitelson 1992). 

4.2.2 Hyperspectral Imaging 

The advantage of hyperspectral imaging is that there is no need for any sample exper-
tise by the operating personnel since at each place a complete spectrum is recorded 
and postprocessing allows mining for all information in the dataset. Hyperspec-
tral imaging provides ample data to deal with different agricultural issues such as 
the detection of diseases, weeds, and stress, monitoring of crops, transportation of 
nutrients, soil mineralogy, estimation of yield, and sorting applications (Ran et al. 
2017). The improvement of precision agriculture could be facilitated by using the 
short, non-unfavorable, and real-time tracking of soil nutrient modifications that 
hyperspectral remote sensing can offer. Hyperspectral remote sensing technology
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can screen soil organic matter speedy, in actual time, and without inflicting damage, 
it has gained importance as a device for researchers assessing soil qualities (Panigrahi 
and Das 2018). The ratio of the reflected flux to the incoming flux at a particular 
wavelength is known as the spectral reflectance. The soil spectral characteristic curve 
is created by way of the way exceptional molecules within the soil take in and mirror 
mild at numerous wavelengths. By the usage of numerous spectrum transformation 
strategies to reduce noise in the unique spectral statistics and arrange the correlation 
among the spectral information and the chemical measurement values, hyperspectral 
records can be expressed more efficiently. In this way, soil organic matter, mineral 
content (N, P, K) as well as soil properties change can be monitored (Hong et al. 
2018). 

4.2.3 Thermal Infrared Imaging 

Thermal imaging provides a discreet, scalable approach to monitoring soil surface 
temperatures based on the idea of soil moisture analysis. Thermal cameras are bene-
ficial in figuring out field portions that can be below moisture stress given that they 
could hit upon temperature changes between wet and dry soil. By accurately applying 
water where it is needed, these facts can improve irrigation schedules, resulting in 
more green water usage and less waste. Thermal cameras are beneficial in figuring 
out field portions that can be below moisture stress given that they could hit upon 
temperature changes between wet and dry soil. By accurately applying water where it 
is needed, these facts can improve irrigation schedules, resulting in more green water 
usage and less waste. Infrared imaging is a kind of remote sensing where thermal 
cameras, especially with uncooled microbolometer detectors are used to measure the 
quantity of heat radiation radiated from the earth’s surface. The geographic distri-
bution of heat radiation is represented via thermograms, which might be thermal 
pictures taken by using the sensors. A map of radiant temperature is created while 
the statistics are corrected based on exclusive variables like object emissivity and 
surrounding situations (Frodella et al. 2020). 

Thermal imaging can determine the effect of soil components, such as biochar, 
on soil temperature changes. This presents precious insights into how these methods 
can beautify soil best and water retention (Blanco et al. 2023). 

4.3 Data Acquisition, Processing, and Integration 

Accurate collection of environmental data historically has been a cornerstone to 
understanding ecological systems and is cheaper than other methods. It is still bound 
by localized measurements, slow processes, and human error. However, this poses a 
significant limitation as ground-based surveys can gather environmental data only for 
localized areas and largely depend on narrow spatial coverage and substantial time
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lags in the processing of data. Those traits make a big splash by capturing ecosystem 
changes over time (Fascista 2022). 

Currently, we live in a technology-driven world, and only with the use of 
modern gadgets to gather accurate data. Satellites, on the other hand, offer a bird’s-
eye view—literally—with large-scale and continuous surveillance across Earth’s 
geology; however, this technology also has trouble providing significant resolution 
due to both technical limitations and clouds. UAVs have low-altitude, short-duration, 
high-load advantages to obtain detailed and flexible data acquisition within a rela-
tively limited range and time of flight; ground-based instruments can provide accu-
rate local measurements but always occupy space. These all combined to develop 
one big environmental surveillance mechanism, thus improving overall data collec-
tion (Fagan and DeFries 2009). Nowadays, new and emerging technologies such as 
Landsat, Sentinel satellites, UAVs, and other ground-based systems fundamentally 
change the ways how data can be captured by facilitating automatic, as well as timely, 
data harvesting. Continuous monitoring at a high level of detail is possible using satel-
lites, while quite narrow-area operations conducted using UAVs allow for conducting 
detailed surveys. On-site sensors provide immediate accurate data that is essential 
for the validation of simulations. Overall, these technologies increase the effective-
ness and accuracy in a broad range of activities such as environmental monitoring, 
agriculture, and disaster relief (Zhang and Zhu 2023). 

In such a context, however, it is of primary importance to address the quality and 
preparation of satellite, UAV, and ground-based data for analysis by using advanced 
pulp-processing techniques. Data cleaning, georeferencing, normalization, resam-
pling, dimensionality reduction, image segmentation, and interpolation are a few of 
the key techniques that contribute to increasing data quality by increasing accuracy 
and reliability with these processes (Illarionova et al. 2022). Atmospheric And Radio-
metric Corrections That Improve the Reliability and Accuracy of Remote Sensing 
Data These corrections tackle long-standing issues to improve the quality and accu-
racy of data and allow for greater comparability between instruments and across 
different conditions. This is a fundamental requirement in sound environmental 
monitoring and analysis (Ahern Ran et al. 1987). Data fusion combines multispectral/ 
hyperspectral and thermal data for increased accuracy, insights, and decision-making 
in environmental analysis. A Comprehensive model is more able to extract features 
and understand complex phenomena as a whole which makes it of great importance 
for agriculture, resource management, and environmental monitoring (Zhou et al. 
2020). 

Multispectral, Hyperspectral, and Thermal data integration enables a better under-
standing of environmental systems that reflect diversified properties and dynamic 
features. The fusion of both not only provides a sophisticated environmental assess-
ment but also supports informed decision-making to advance deeper comprehension 
in understanding complex ecological relationships (Halog and Manik 2011). 

Finally, there have been great advances made in data analytics techniques such 
as those involving AI and spectral unmixing which can greatly enhance the anal-
yses of complex raster-based remote sensing datasets. The characteristic extraction, 
scalability, and accuracy of machine learning along with the systematic nature of
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GEP were successfully merged to bring about data-driven decision-making and real-
time monitoring in environmental management and research. Along the same line, 
AI-based spectral unmixing shortens delays in decision-making and enhances preci-
sion, efficiency, and adaptability to eventually support the sustainable management 
of natural resources (Janga et al. 2023). 

So, the traditional way of collecting data has gone forward to conserve and docu-
ment the historical record well, while current technologies provide real-time snapshot 
monitoring on a larger scale much more efficiently to help inform our management 
and conservation efforts. 

4.4 Applications in Agriculture and Precision Farming 

Traditional agricultural monitoring techniques, such as manual field surveys, have 
frequently been criticized for their labor-intensive nature and restricted scalability. 
These methods fall short of addressing the increased demand for precision in farm 
management, which necessitates quick and accurate reactions to crop stress, nutrient 
shortages, and pest outbreaks. Food security and environmental conservation are 
two of the most important concerns confronting the world today. Food production is 
predicted to increase by at least 70% by 2050 to support continued population growth, 
even though global agricultural acreage remains mostly unaltered (Sona et al. 2016). 
Precision agriculture is a technique for boosting productivity to meet rising food 
demand while lowering the economic and environmental expenses of food produc-
tion (Sethy et al. 2022). Emerging technologies such as multispectral, hyperspec-
tral, and thermal infrared imaging have revolutionized agricultural surveillance by 
providing precise, real-time data, significantly enhancing the effectiveness of preci-
sion agriculture. Traditional crop monitoring systems rely mainly on physical labor 
and visual inspections, which are sometimes inefficient for large-scale production. 
These systems are constrained by the time required to respond to stress indicators, 
which can affect crop health and output. Multispectral and hyperspectral imaging 
technologies are significant advances in remote sensing for agriculture. Multispec-
tral imaging collects data from a small number of spectral bands, generally in the 
visible and near-infrared (NIR) ranges. Vegetation indices derived from multispectral 
data, such as the Normalized Difference Vegetation Index (NDVI), are widely used 
to assess crop vigor, identify diseases, and follow vegetation growth cycles. These 
techniques allow for early diagnosis of crop stress, leading to timely actions. Hyper-
spectral imaging, on the other hand, offers a more comprehensive view by collecting 
data from hundreds of small spectral bands. This higher spectral resolution allows 
for more advanced investigations of plant physiology, such as early identification of 
nutrient deficits and insect epidemics. For example, Vegetation Characterization is a 
crucial indication of ecosystem resilience to environmental change (Singh 2022). 

More accurate fertilization is possible by utilizing certain spectral bands to detect 
early-stage shortages in potassium, phosphorus, and nitrogen. In addition, hyper-
spectral imaging improves disease identification by identifying subtle physiological
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changes in crops, which enables more targeted and early treatment than conven-
tional techniques. More proactive and accurate agricultural management is made 
possible by the capacity to forecast pest and disease outbreaks using hyperspectral 
imaging. Because it can identify soil temperature and plant water stress, thermal 
infrared imaging has become more and more common in agricultural applications. 
When plants experience a shortage of water because of a soil water deficit or an 
excessive amount of atmospheric evaporative demand, it is referred to as drought 
stress or water-deficit stress (Gerhards et al. 2019). Planning irrigation schedules 
and identifying droughts depend heavily on surface temperature readings provided by 
thermal sensors. Because it makes accurate water management possible in real-time, 
thermal imaging is particularly helpful in drought-prone areas as it lowers waste and 
boosts crop yield. In addition to identifying water stress, thermal imaging is utilized 
to gauge soil temperature. Crop output, root growth, and seed germination are all 
significantly influenced by soil temperature. Thermal infrared (TIR) data can reveal 
additional information on the temperature and spectral emissivity of several environ-
mental elements, including important minerals that create rocks and soil, particular 
gaseous constituents, and flora (Schlerf et al. 2012). By giving information regarding 
soil conditions, thermal infrared imaging can assist farmers in improving planting 
schedules and germination rates. Combining thermal imaging data with other preci-
sion agriculture technologies can help farmers manage their crops and soil more 
sustainably and efficiently, hence increasing resource utilization. A move away from 
labor-intensive procedures and toward data-driven decision-making has been made 
possible by the integration of multispectral, hyperspectral, and thermal imaging tech-
nologies into automated monitoring systems. Using drones, satellites, or stationary 
ground-based equipment, these remote sensing technologies are frequently used to 
gather data from vast agricultural areas. With the help of automated methods, broad 
territories can be efficiently administered with little to no human interaction thanks to 
real-time monitoring that eliminates the need for manual field surveys. Because they 
empower farmers to make data-driven, well-informed decisions that maximize crop 
health, productivity, and resource efficiency, these technologies are essential to the 
future of precision farming. Advanced imaging technology will become more crucial 
as agriculture develops in supporting sustainability and tackling global concerns like 
environmental preservation and food security (Zhang et al. 2020). 

Case Study I: Effect of various nitrogen levels on maize yield performance using 

UAS technology 

This study investigates the effect of different nitrogen levels on maize yield perfor-
mance using Unmanned Aerial System (UAS) technology. By capturing multispec-
tral imagery at various growth stages, UAS technology enabled precise monitoring of 
nitrogen’s impact on crop health and productivity. Yield estimates, ranging from 0.07 
to 9.1 tons/ha, were derived using advanced tools like R and QGIS (Fig. 4.1). The 
yield map revealed how nitrogen variability influenced maize growth, highlighting 
areas with both high and low productivity. This approach demonstrates the effective-
ness of UAS technology in optimizing nitrogen use, improving yield performance, 
and promoting resource-efficient farming practices.
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Fig. 4.1 UAV-based maize yield estimation using multispectral imagery for precision farming 

4.5 Forest Monitoring and Conservation 

4.5.1 Conventional Methods of Monitoring 

For many years, deforestation rate and biodiversity changes have relied on surveys 
both forest ground and satellite-based. Ground-based surveys are quite efficient in 
such measurements as the diameter of the tree, identifying species, or even calcu-
lating forest density; however, they involve a lot of time, require many resources, 
and cover only a limited area. Remote sensing is cheap and effective through a 
wide range of optical, infrared, and radar pictures aimed at monitoring large areas, 
however, such data can be poor resolution-wise and clogged by clouds. The combi-
nation of ground-based and satellite-based approaches provides all-rounded forest 
management (Leckie 1990). 

4.5.2 Limitations to Traditional Monitoring 

Coverage and Reach Problems. In the case of field surveys, their geographical extent 
can be a limiting factor in tracking and monitoring wide stretches of land such as 
forests, whereas remote sensing provides general information but does not provide 
information of interest regarding small changes. Ground truthing provides accurate



76 Md. K. H. Milu et al.

information in small regions, but because of its limited scope, it tends to make 
blanket assumptions over larger regions. At times remote sensing equipment yields 
images that are of a very low quality, thus making the sensitive parameters obscured. 
Furthermore, reaching the field to collect data contributes to the slow response to 
threats such as illegal logging and bushfires, while remote sensing is limited by 
the presence of clouds; thus, there are delays in analysis (Mitchell et al. 2017). 
Multispectral and hyperspectral imaging are relatively new remote sensing concepts 
that involve collecting data from multiple wavelengths, where imaging in the visible 
near-infrared and short-wave infrared for vegetation health is cheap while imaging 
in all wavelengths allows for very fine-spectral resolution and identification of types 
of species. Both techniques contribute to the physical interpretation of forests and 
their condition over time (Fischer and Kakoulli 2006). 

4.5.3 Changing the Perspective of Forests Resilience 

Monitoring 

The imaging epiphany that has taken over biomass estimation, assessment of vegeta-
tion state, and species composition includes multispectral and hyperspectral imaging. 
They promote management by allowing ancillary information on the forests to be 
captured much earlier than the deterioration of the forest becomes evident (Seidl 
et al. 2016). 

4.5.4 Monitoring Carbon Stocks and How Deforestation Can 

Be Controlled 

A combination of the two imaging techniques is necessary for forest carbon stock 
assessment as well as deforestation assessment by evaluating landscape biomass and 
vegetation status for facilitating efficient forestry management and reserve programs 
(Ling et al. 2017). 

4.5.5 Thermal Infrared Imaging (TIR) 

An Imaging technique using thermal radiation to evaluate forest vitality, find evidence 
of water stress, and map out temperature hotspots that may indicate areas of potential 
fire outbreak. It also measures the rate of evapotranspiration adding to the compre-
hension of forest dynamics. Though TIR offers useful information, it has a depth of 
spectral range limitation and is weather-dependent (Qi and Diakides 2003).
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1. Wildfire Management: TIR in the management of wildfires aids in the preven-
tion and suppression activities of wildfires by providing means of spotting the 
active fire in progress in real-time (Riggan 2003). 

2. Heat Stress Detection: Heat Stress detection in forests aimed at alleviating risks 
of fire and drought is where TIR plays an important role. It aids in averting 
damages and appropriate management of resources in readiness for periods 
of prolonged dry weather thereby enhancing the health of the ecosystem and 
practices of management (Ghezzi et al. 2024). 

So, the use of these modern monitoring methods facilitates better manage-
ment of forests, combats problems related to the environment, and advances their 
conservation. 

Case Study II: Structural difference of Sal-forest in different land cover based 

on GEDI-lidar 

This particular scenario incorporates the identification of changes in land use land 
cover (LULC) over the Madhupur Sal Forest region between the years 2013 and 2023 
using multi-spectral sensors, Landsat imagery, and random forest machine learning 
classification techniques (Table 4.1, Fig.  4.2). It was established that a considerable 
amount of deforestation took place in the Sal Forest area that measured 4962.78 eh in 
the year 2013 decreasing to 2937.24 eh in the year 2023, whereas several other lands 
were brought for agricultural purposes. The Random Forest algorithm provided a 
good classification and showed encroachment into farmlands and developments of 
homesteads. Also, the GEDI data added the dimension of the landscape’s vertical 
profile showing lower canopy heights in farming areas as opposed to the rest of the 
forest. The study therefore demonstrates the effective role of remote sensing and 
machine learning in assessing forest loss and land use changes. 

Table 4.1 Temporal changes in land cover: Madhupur Sal Forest (2013–2023) 

Categories 2013 Area (ha) 2018 Area (ha) 2023 Area (ha) 

Sal forest 4962.78 3300.03 2937.24 

Rubber plantation 2686.77 2391.48 2243.61 

Agriculture 6359.76 9228.24 8184.33 

Homestead 22,618.89 21,646.26 23,209.02 

Waterbodies 2153.79 1387.8 1525.41 

Others 718.74 1546.92 1402.92 

Total 39,500.73 39,500.73 39,502.53
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Fig. 4.2 Evaluating structural variations of Sal forests about different land cover types using GEDI 
lidar 

4.6 Water Resource and Marine Science Applications 

Oceans are the most important of all because they hold and store about 25 percent of 
the annual worldwide carbon emissions. Technologies that improve the effectiveness 
of monitoring this primary process are frontier developments. Applications under 
NASA’s PACE (Plankton, Aerosol, Cloud, and ocean Ecosystem) satellite launched 
in 2024 will be enabling detailed monitoring of ocean color and phytoplankton 
populations-the critical indicators of what is happening in the ocean and possible 
carbon sinking (NASA 2024a). Photosynthesizing phytoplankton and seaweeds play 
a very significant role in the marine carbon cycle by absorbing CO2. ESA’s Sentinel-2 
and Sentinel-3 missions take a step further in measuring seaweed biomass and natural 
kelp forests at a global scale, thereby giving critical information in terms of assess-
ment of their role in climate change mitigation (ESA 2024a). Added to that is the 
GOSAT-2 mission by the Japan Aerospace Exploration Agency which monitors the 
methane and CO2 concentrations over oceans; thus, providing emission events from 
volcanic activities, ocean-based industries, and bed sediments of the seabed. These 
missions collectively facilitate the assessment of oceanic sequestration of carbon and
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advancing the knowledge about the role of marine ecosystems in the fight against 
climate change (JAXA 2024a). 

Conventional techniques are fundamentally established by sampling and 
observing water samples, and the analysis is conducted in a laboratory setting. 
Mistakes may transpire during the process of specimen preparation within the labo-
ratory environment (Amrita et al. 2018). Traditional laboratory techniques require 
a longer time, incur higher costs, involve chemical materials, and do not provide 
real-time results (Zulkifli et al. 2018). Modern approaches offer greater advantages 
compared to traditional methods because they are capable of generating output 
results and conducting real-time analysis of water quality parameters. UAV-based 
remote sensing technology is mobile, flexible, and cost-effective. Its high spatial 
and temporal resolution is gaining popularity, making it ideal for small-scale water 
quality monitoring and quantitative analysis of water quality parameters (Hu and 
Zhou 2020). 

UAV-based multispectral images are responsive to changes in dissolved oxygen 
and turbidity, making them useful for monitoring water quality parameters (Sun 
2019). Hyperspectral imaging is useful for monitoring water quality parameters like 
Chlorophyll-a, Blooms, total phosphorus, and lake bathymetry (Premkumar et al. 
2021; Wolny et al. 2020; Niu et al. 2021; Zhang et al. 2021). Hyperspectral imaging 
can effectively capture spectral signatures of marine flora, such as macroalgae and 
seagrasses, which serve as bioindicators of ecosystem health (Varini et al. 2024). 
Combining hyperspectral and multispectral data enhances spatial and spectral reso-
lution, allowing for more accurate biodiversity assessments and the calculation of 
alpha and beta diversity. Low-cost hyperspectral imaging has been successfully used 
to assess coral reefs, demonstrating its potential for identifying habitat types and 
monitoring environmental changes (Teague et al. 2023). 

The technique of thermal infrared remote sensing offers a compelling option for 
measuring water temperatures and analyzing spatial distributions of water tempera-
ture across various spatial scales (Handcock et al. 2006). Thermal imaging technology 
can accurately identify marine mammals, including killer whales, in coastal areas, 
which is essential for enforcing conservation measures like speed limits and area 
closures (Richter et al. 2023). Infrared thermography (IRT) plays a crucial role in 
observing how intertidal organisms react to heat stress, aiding in the identification 
of thermal refuges that are vital for species to adapt to climate change. In addition 
to aerial surveys, this technology can be utilized to generate comprehensive thermal 
maps of coastal areas. These maps aid in evaluating the appropriateness of habitats 
(Lathlean et al. 2017).



80 Md. K. H. Milu et al.

4.7 Urban and Regional Planning: Urban Heat Island 

Mitigation 

4.7.1 Traditional Urban Environmental Monitoring 

Techniques 

Conventional methods of monitoring the environment comprise the fixed station 
(Manfreda et al. 2018) and sampling which gives regional information in the town 
but fails to record changes in the environmental gradient (Nabiollahi et al. 2018; 
Reba and Seto 2020). These methods are time-consuming are confined to selec-
tive areas only and provide only point estimates. But, as cities expand and envi-
ronmental issues evolve, there are other more extensive and real-time applicative 
methods, called remote sensing (Li et al. 2020), that have developed to augment 
these two classical ones, allowing for broader survey, monitoring, and ability for 
more accurately develop observational scales (Cao and Lam 2023) and quantification 
of environmental conditions (de Araujo Barbosa et al. 2015). 

4.7.2 TIR Imaging and UHI Monitoring 

TIR has become a powerful tool for UHI monitoring (Coutts et al. 2016; Shi et al. 
2021) through the detection of the emitted infrared radiation for measurement of the 
surface temperature in real time (Wan et al. 2021). This allows proper distribution 
mapping of heat in the urban area, and hence, defines areas of high heat density and 
prevents heat through modifying building roofs to ‘cool roofs and planting more 
trees. Communities such as LA have been able to use TIR (Fu and Weng 2015) 
and measure the effectiveness of reflective surface measures by reducing the surface 
temperature.

• Real-Time Data Analytics and AI: With AI and machine learning able to parse 
vast thermal datasets in real-time (Sadiqbatcha et al. 2021), the system can detect 
parts or regions with atypical high-temperature activity (Ahmed et al. 2024) 
and even project future heat development, giving opportunities for early caloric 
interference.

• Community Thermal Sensors: Small thermal sensors installed by the commu-
nity extend the scope of satellite and drone data with ground-level information 
(Zhang et al. 2018) that can benefit residents of policymakers in combating UHI 
impact and pursuing energy conservation.
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4.7.3 Multispectral and Hyperspectral Imaging in Urban 

Planning 

Multispectral and hyperspectral imaging technologies are accurately mapped for the 
environment with spectral layers across multiple bands (Lu et al. 2020) to Track 
Air Quality, Urban Infrastructure, and land usage in detail (Nisha and Anitha 2022). 
These sensors can measure the presence of particulate matter, NO2, and SO2 (He 
et al. 2019; Kheiralipour et al. 2024) important for understanding urban air pollution. 
Hyperspectral imaging also aids in infrastructure monitoring (Shimoni et al. 2019) 
because signs of abrasion of roads, bridges, and buildings are early detected. These 
sensors help in measuring the impacts of some extent of urbanization on natural 
environments (Lynch et al. 2020). These can help city planners bring sustainable 
management to urban growth through the detecting of changes in these areas as 
well as help ensure clean water supplies through improvements of multispectral and 
hyperspectral imaging (Ghezzi et al. 2024). 

Case Study III: Urban Heat Island 

UHI is combated by utilizing Thermal Infrared (TIR) imagery or using LA’s Urban 
Heat Island critics such as the “Cool Roof” program annuals or financing vegetation 
in the urban heat island. Information gathered from TIR was used to plot heat density 
and evaluate reflective rooftops that caused cooling of between 3 degrees within the 
local region (Santamouris et al. 2012). Additional parks and open spaces, as well as 
the planting of trees in the specific locations impacting heat island effects, the reduc-
tion was recorded at 1.9 °C according to the Los Angeles Urban Cooler Collabora-
tive (2020). Supplemental entrenchment utilizing TIR sensors fixed to satellites and 
drones, including information from the Landsat 8 satellite, enabled real-time moni-
toring of these intercessions. Through combined efforts, consumption of energy for 
cooling has been reduced by 15 percent across the entire city (Sailor et al. 2021). 

All in all, TIR, multispectral, and hyperspectral sensors are among the most recent 
imaging technologies that hold the potential for substantial improvement in environ-
mental monitoring with real-time high-resolution data necessary for tackling urban 
issues for sustainable development. 

4.8 Climate Change Monitoring and Earth Observation 

The old ways of watching climate change like tracking surface temps or basic remote 
sensing aren’t always good enough anymore—they miss too much nuance! Things 
like desertification or changing vegetation patterns often slip through the cracks 
using just these methods. But now things have changed—thanks to high-tech tools 
like thermal infrared imaging as well as multispectral and hyperspectral imaging that 
offer extensive real-time data needed for meaningful insights into climate changes. 
Traditional techniques mostly deal with surface temperature readings paired with
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limited satellite data; they lack the overall resolution needed at times for accuracy 
when spotting crucial climate shifts—like soil degradation or vegetation health dete-
rioration. As climate change speeds up—finer instruments are desperately required! 
They provide precise updates on how ecosystems cope. By gathering various wave-
lengths through multispectral and hyperspectral imaging—we can see ecosystem 
changes incredibly well! Researchers have found that we might be nearing dangerous 
climate tipping points right here on Earth (Ustin and Middleton 2021). Hyperspectral 
insights see even tiny shifts happening within soil makeup while also seeing signs of 
water quality drops or vegetation stress early before it’s too late compared to just a 
handful of indicators seen through multispectral strategies (Rast and Painter 2019). 

These breakthroughs help monitor plant health changes linked directly back to 
global climate patterns as we map out erosion events or desert expansion there also 
spot carbon emissions from struggling veggie life often linked closely together by 
respiratory rates. Especially handy during ‘heat-wave moments’ that happen around 
polar spots where thawing permafrost patterns lead directly concerning melting 
glaciers affected heavily by rising atmospheric temps combined assessments–this 
utilizes heat emissions observed across broad surfaces providing insight into warming 
impacts felt globally. Merging these three amazing techniques allows us to further 
examine environments thoroughly observing how they react dynamically to stream-
energy keeping track all along adjusting strategies toward resiliency moving forward 
towards sustainable initiatives. 

Environmental monitoring is in a position to make unprecedented advancements 
in the coming century because of collaborations between space agencies and private 
enterprises, creating all new approaches to satellite technologies in the field to 
tackle climate change and encourage sustainable development. For example, the 
NASA GeoXO mission on Geostationary Extended Observations is scheduled to 
kick off in about 2032 and continue into the 2050s, to improve atmospheric and 
oceanic measurements, weather forecasting, and analysis of climate systems. Agreed 
incidental document under NEON (Near-Earth Orbit Network), a jointly funded 
NASA and NOAA project will have QuickSounder spacecraft launched in 2026, 
using its small and medium-sized satellites to revolutionize disaster management 
and weather forecasting (NASA 2024b). “Copernicus Sentinel-2C,” ESA’s program 
of the continuation of the largest environmental monitoring program in the world, 
launched in 2024, equipped exclusively for deforestation and urban growth moni-
toring (ESA 2024b). Another advanced land observing satellite, launched by JAXA 
in 2024, simultaneously augments Japanese satellite missions other than the nation-
ally launched satellites for disaster response and environmental monitoring ability 
(JAXA 2024b). 

Private sector intervention in environmental monitoring is quite significant. 
SpaceX was one of the private firms that pioneered launching a satellite into orbit 
for environment monitoring in 2024, MethaneSAT, which involves the initiative of 
shoring up data on the world’s methane emissions as part of activities critical to 
addressing climate change. Accompanying the launch of MethaneSAT is that of the 
Weather System Follow-on Microwave (WSF-M) satellite, which serves to boost 
environmental observations from Sun-synchronous orbit (Environmental Defense
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Fund 2024; AmericaSpace 2024). The e10.6 billion project IRIS2, which combines 
secure satellite communication and environmental monitoring, is proof of Europe 
awaiting more holistic space-based solutions and is expected to be completed within 
the year 2030 (ESA 2024c). 

4.9 Ecosystem and Biodiversity Conservation 

4.9.1 Traditional Ecosystem Monitoring: Challenges 

Consequently, conservationists have been dependent for some time upon basic field 
methods for ecosystem health assessments, requiring extensive surveys and collec-
tions of specimens (Hughes and Peck 2008). Although useful as they provide high 
confidence in having ground truth image matching of the local data, these methods are 
time consuming, labor intensive and suffer from human error (Faheem et al. 2024). 
Geological biodiversity assessments have substantial geographical data gaps with 
entire ecosystems such as rainforests and wetlands having inadequate monitoring 
(Brown et al. 2024; Junk et al. 2024). 

4.9.2 Role of Multispectral and Hyperspectral Imaging: 

For remote sensing, multispectral or hyperspectral imaging can provide data points 
beyond what is seen in our sun’s output. Multispectral images access a few separated 
bands (i.e. band, green, near-infrared) (De Petris et al. 2024), whereas hyperspectral 
images collect hundreds of contiguous bands offering comprehensive reflectance 
data (Tejasree and Agilandeeswari 2024). These tools make it possible to monitor 
slight changes in vegetation health, soil moisture, or water quality on an ecosystem 
scale (Adam et al. 2010). 

1. Mapping Species and Habitat Types: One major application of sensors tailored 
for hyperspectral imaging is species mapping (Matese et al. 2024) and habitat type 
mapping (McCraine et al. 2024) at landscape scales, as each spectral signature 
carries information on the particular species (Hesketh and Sánchez-Azofeifa 
2012). It is especially useful in communities like rainforests where traditional 
surveys may simply miss rare species (Pang et al. 2024). 

2. Vegetation Health and Land Use Monitoring: Multispectral and hyperspectral 
imaging can detect signs of stress from drought, disease, or pollution in plants 
by measuring near-infrared reflectance (Zhang et al. 2024) and allowing for 
preemptive risk assessments in the environment. Moreover, these techniques 
enable the monitoring of land-use modification (de-as well as urbanization), 
therefore greatly enhancing conservation efforts (Yang et al. 2024).
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4.9.3 The Use of Thermal Infrared Imaging in Wildlife 

and Habitat Groups Conservation 

Thermal infrared imaging (TIR) involves mapping the infrared emitted by an object 
(Upadhyay et al. 2024) to determine thermal signatures of the ecosystem (Smigaj 
et al. 2023), or monitor animal activities (Barrios et al. 2024). Peculiar to TIR, it is 
possible to determine temperature differences within landscapes, which are important 
for relating species distribution and environmental conditions (Smigaj et al. 2023). 
TIR is best used in monitoring animals that are active at night as it does not disturb the 
flow of movement. It is important to monitor the big predator species as well as the 
endangered species to understand their movements and the requisite environments 
(Dawlings 2024). 

Applications 

1. Illegal Logging Detection in Brazil: In the case of thermal and multispectral 
imagery, they have succeeded in halting whatalué logging in the Amazon (Souza 
et al. 2005), thus avoiding large tracts of forest being cut down. 

2. Coral Reef Health Monitoring: Focal plane array hyperspectral imagery that 
is taken of the Great Barrier Reef tells the conservationist common occurrences 
such as coral bleaching and algal blooms (Hafizt et al. 2023). 

3. Deforestation in Tropical Rainforests: Remotely sensed data by multispectral 
cameras addresses the effects of deforestation on the biome and contributes to 
reforestation strategies (Haq et al. 2024). 

4. Wetland Restoration: TIR aids in the evaluation of temperatures and water 
levels concerning wetlands and drives restoration especially in sensitive areas 
like the Everglades (Reid Nichols et al. 2025). 

4.10 Disaster Management and Environmental Risk 

Assessment 

Traditional knowledge is usually restricted to particular communities and areas, with 
little to no wide-ranging, networked supervision. Since the risks and consequences of 
disasters often cross local boundaries, traditional approaches struggle to provide an 
accurate large-scale viewpoint (Macnight Ngwese et al. 2018). The ability of sensors 
and ground-based surveys to deliver timely information in a quickly changing crisis 
may be constrained. Disasters are frequently detected and monitored more quickly 
across a larger area when remote sensing techniques employing satellite or aerial 
imagery are used (Ye 2022). 

Remote sensing monitoring is widely utilized in various disaster management 
fields and offers clear advantages over traditional methods regarding timeliness, 
space, and affordability (Abdullah et al. 2019). The use of multispectral images 
has proven effective in monitoring water bodies, and rivers, detecting changes, as 
well as extracting water features (Buma et al. 2018). Optical remote sensing can
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also be utilized to map flooded areas enabling quick and accurate identification of 
hazardous locations and facilitating the implementation of flood coping methods and 
response operations even in the presence of cloud cover. Thorough information on 
flood inundation styles may be acquired using combining multispectral and hyper-
spectral facts with other remote sensing technologies, along with Cyclone Global 
Navigation Satellite System (CYGNSS) (Gerlein-Safdi and Ruf 2019; Zhang et al. 
2020). Hyperspectral imaging has been used to identify drought stress in plants 
by examining spectral signatures and indicators such as the red-edge slope. This 
enables the early detection of the effects of drought on vegetation. In the visible 
and near-infrared spectral regions, low-cost image hyperspectral cameras can now 
collect high-resolution spectral data, creating new opportunities for high-throughput 
plant phenotyping. This makes it possible to fast and effectively determine how 
agriculture is responding to environmental stressors like drought. The use of less 
expensive, portable hyperspectral cameras is one capability improvement that can 
raise the technology accessibility for programs including environmental tracking and 
disaster preparedness (Genangeli et al. 2023). Ground-based thermal infrared (TIR) 
remote sensing is widely adopted for volcanological research and surveillance. They 
are used to investigate volcanic plumes and gases, lava flows, lava lakes, and fuma-
role fields. Increasing interest has been in developing better monitoring instruments 
and processing long TIR time series of infrared (IR) images on volcanic areas. That 
makes it possible to monitor temporal variations in thermal anomalies on the surface, 
and potentially more eruptive activity (Sansivero and Vilardo 2019). Infrared (IR) 
cameras can measure heat radiation emitted from individuals or groups of objects in 
the immediate area. Being able to do so will identify these or better thermal sources 
as a very legitimate target, and at the end of the day, that gives them equal value 
and utility in both daytime and nighttime scenarios. Multiple fire detection scenarios 
could be covered by this, allowing us to capture data at various resolutions. Thermal 
Cameras allow hotspot detection and shorter fire response times it is of even greater 
importance in places where there is no satellite surveillance, such as remote areas 
(Carta et al. 2023). 

By measuring the temperature distribution and detecting radiation energy on the 
exterior walls of buildings, we can find cracks or fractures using infrared thermal 
imaging technology After a tragedy, this type of detection is important to doing 
away with capability threats and safeguarding people’s property. This technology is 
useful for nighttime emergency rescue operations following earthquakes and different 
calamities because it can oppose the temperature facts of a ground item’s floor by 
detecting its emission energy, and is unaffected by harsh weather. For emergency 
monitoring following failures, accumulating wall fracture facts and crack records 
from broken homes in regions of intense screw-ups offers a particular advantage 
(Zhang et al. 2020).
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4.11 Future of Remote Sensing: Technological 

Advancements and Challenges 

Remote sensing data, with its heterogeneous and sometimes incomplete nature, 
presents a complex challenge for analysis (Murugan and Haldorai 2020). Generating 
high-quality pixel-level labels for deep learning models remains a significant chal-
lenge due to the resource-intensive nature of the process (Li et al. 2024). The remark-
able increase in remote sensing big data underscores the need for advanced compu-
tational techniques, such as machine learning, to effectively process and analyze the 
data (Zhang et al. 2020). 

Compared to conventional techniques, machine learning algorithms are better at 
handling the volume and complexity of remote sensing data, resulting in accurate 
and reliable predictions. Integration of Machine learning with remote sensing data 
enables us to predict climatic and environmental conditions, advanced resources, 
and disaster management. Thus, scientific understanding and practical solutions for 
global challenges are achieved, enhancing the necessity of further research (Shaik 
et al. 2024). Artificial intelligence (AI)–based models and techniques are frequently 
employed to improve the efficiency of remote sensing technology. Due to their great 
performance and effectiveness, deep learning (DL) models are the most studied 
AI-based models (Chen et al. 2023). As deep learning (DL) approaches perform 
exceptionally well in feature extraction, data categorization, and interpretation, they 
have been used in many studies on remote sensing technology. Building a high-
performing deep learning model for certain use cases necessitates a large amount 
of pertinent labeled data. DL approaches are very helpful in remote sensing since 
massive data processing is a major component of most applications of these technolo-
gies (LeCun et al. 2015). The implementation of low-cost sensors for the environment 
has received a lot of interest because of its low cost and potential to expand environ-
mental monitoring networks. Calibration is difficult for low-cost sensors because of 
the variety of sensing materials, transducer designs, and environmental factors (Sale-
habadi et al. 2023). The Fraunhofer Lighthouse Project ‘eHarsh’ is a collaboration of 
eight Fraunhofer Institutes to address the challenges of extreme hostile environments 
(Kappert et al. 2022). Environmental monitoring continues to gain popularity due to 
its major impact on natural resource management, the economy, and human life and 
health. While these systems play a vital role in our society, their implementation may 
generate various types of security and privacy concerns, thereby hindering the estab-
lishment of potential applications related to the environment (Vimercati et al. 2013). 
The implementation of sensors for workplace exposure assessment highlights issues 
regarding data exploitation and the necessity for the involvement of stakeholders 
in the process of making decisions. The possibility of privacy violations caused by 
ongoing monitoring emphasizes the significance of transparency and ethical concerns 
in sensor applications (Goede et al. 2021).
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4.12 Conclusion 

Multispectral, hyperspectral, and thermal infrared imaging technologies have revo-
lutionized environmental monitoring through their unmatched levels of precision, 
real-time information delivery, and scalability. Together with traditional methods, 
these innovations provide better options for monitoring a wider range of changing 
ecosystems. By using multispectral imaging, it is possible to monitor the health of 
plants and the quality of water through different spectral bands that are available 
(Zarco-Tejada et al. 2014). Hyperspectral imaging allows to capture of hundreds of 
spectral bands which makes it possible to detect small environmental stressors, e.g. 
soil degradation and early signs of crop disease (Vane and Goetz 1988). The under-
standing of surface energy exchanges and processes such as evapotranspiration is 
enhanced, which are important in water resource management and climate studies, 
through thermal infrared imaging that adds another vital dimension by capturing 
temperature variations (Dash et al. 2002). All these technologies together are a multi-
dimensional way to deal with the environment, helping to take action in different 
areas such as farming, timber production, water supply and city planning (Lambers 
et al. 2008). 

The prospects of these imaging technologies seem more hopeful. Due to rapid 
sensor technology advancements, extensive and continuous global ecology moni-
toring can be done in real time and based on ecosystem changes (Thenkabail et al. 
2014). In addition, the inclusion of artificial intelligence (AI) and machine learning 
within these systems is going to strengthen their analytic capability, allowing them 
to automatically find and anticipate the changes that occur in the environment 
(Mutanga and Kumar 2007). Over time, integrating artificial intelligence along with 
hyperspectral and thermal infrared information can lead to heightened precision in 
early warning systems for natural calamities, enhanced resource management, and 
sustainable city planning. These technologies will be deployed increasingly often 
for data-centric insights given the expanding scope of environmental issues and their 
complexity (Anderson et al. 1997). 
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Transforming Geriatric Care: The Role 

of Remote Sensing Technologies 

in Nursing for Older Adults 

Tiago Horta Reis Da Silva 

Abstract The integration of remote sensing technologies in nursing care for older 
adults holds significant promise for improving health monitoring, enhancing patient 
outcomes, and addressing the unique challenges faced by this growing population. 
As the global demographic shift towards an ageing population continues, innovative 
approaches are needed to manage the complex health needs of older adults. Remote 
sensing, involving the acquisition and analysis of data from a distance, offers trans-
formative potential through continuous monitoring of vital signs, chronic conditions, 
and environmental factors. This chapter explores the application of remote sensing 
in geriatric nursing, highlighting current uses such as vital sign monitoring, fall 
detection, cognitive health assessment, and environmental monitoring. It addresses 
the technical, ethical, and operational challenges associated with these technologies, 
including data accuracy, privacy concerns, and usability for older adults. Addition-
ally, the chapter examines future trends and advancements in sensor technologies, 
the integration of artificial intelligence, and the expansion of telehealth services. 
As healthcare systems evolve to meet the demands of an aging population, remote 
sensing technologies are poised to play a crucial role in enhancing the quality of care 
for older adults, ensuring their health and well-being through innovative, data-driven 
solutions. 
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5.1 Introduction 

The global ageing phenomenon constitutes one of the most critical demographic 
trends observed in the twenty-first century, marked by a rising percentage of older 
individuals within the population (Reis da Silva 2024a, b). As reported by the World 
Health Organization (WHO), it is anticipated that by the year 2050, the number of 
individuals aged 60 years and above will ascend to 2 billion, an increase from 1 billion 
in 2020 (Smith et al. 2021). The demographic transition brings many challenges to the 
healthcare system, particularly with regard to older patient care. Ageing patients often 
face complex health issues, including chronic diseases, decline in mental capability, 
and loss of physical strength, and thus need specialised healthcare services (Reis da 
Silva 2024c, 2024d, e). The increasing prevalence of diseases, such as dementia and 
frailty, complicates care and requires not only medical interventions but also ancillary 
services focused on addressing the psychosocial needs of older adults (Teófilo et al. 
2018). 

The healthcare system faces significant challenges in adapting to the needs of 
an ageing population. Currently, there is a great demand for health professionals 
with training in geriatrics; however, most nursing curricula lack the comprehen-
sive curricula to equip the student with the necessary preparation for complexity 
when caring for older adults (Gibney et al. 2015; Reis da Silva 2024b, c). Research 
conducted by Bahçecioğlu et al. (2022), Huh and Shin (2021) emphasises the neces-
sity of incorporating gerontological education within nursing curricula to promote 
favorable perspectives regarding geriatric care and to stimulate a greater number of 
nurses to pursue careers in this domain. 

Furthermore, the insufficiency of healthcare professionals, especially in rural and 
underserved regions, intensifies the challenges associated with delivering sufficient 
care to the older population (Alsufyani et al. 2019). This will continue to rise, and it 
becomes imperative that the healthcare system thinks of novel strategies and adjusts 
to meet the challenges posed efficiently. 

Application of various remote-sensing technologies has tremendous potential 
for addressing several healthcare problems affecting the older population. The use 
of remote sensing—a procedure for gathering information about any object or 
phenomenon without being in direct physical contact with the object—has gained 
considerable momentum over the past years (Bahçecioğlu et al. 2022). The purposes 
for which these technologies serve vary within many fields; in health, for instance, 
they monitor health status, assess the influence of the environment on health, and 
enhance care (Bahçecioğlu et al. 2022). For instance, remote sensing technology 
could facilitate better monitoring of the specific environmental conditions that affect 
the well-being of older adults, such as air quality and temperature fluctuations, impor-
tant for the self-management of chronic conditions like asthma and cardiovascular 
disease (Stewart et al. 2020). Additionally, a combination of remote sensing with 
various other technologies such as the Internet of Things might also enable the devel-
opment of smart care systems that could provide instant data about the conditions of 
older patients, thus enabling timely intervention (Sarabia-Cobo et al. 2021).
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This chapter provides an overall review of the global trend in ageing and health 
challenges among older people and introduce different remote-sensing technologies 
and their possible applications within the realm of geriatric care, hence highlighting 
the importance of such technologies in the practice of geriatric nursing. The chapter, 
therefore, scopes the current literature on issues related to ageing, health needs, and 
the contribution of remote sensing toward improvement in the care availed for older 
people. By integrating these elements, this chapter aims to outline an urgent need for 
innovation in geriatric care and the potential benefits arising from remote-sensing 
technologies in improving health outcomes among older adults. 

The role of remote sensing in geriatric nursing cannot be underestimated. Indeed, 
there is an ever-growing need for nurses to be capable in their practice and cognisant 
of emerging technologies. Remote sensing will facilitate the nursing practice in terms 
of providing valuable data that informs care decisions, improves patient monitoring, 
and allows for better communication amongst healthcare providers (MacLeod et al. 
2021). For instance, by leveraging remote sensing technologies, nursing practitioners 
would be able to identify potential environmental hazards posing potential threat 
to the health of the older population and therefore establish preventive measures 
that reduce risks (Lundberg et al. 2020). In addition, remote sensing in telehealth 
programs will facilitate access to health professionals by the older adults, especially 
those who live in far distances or hard-to-reach areas and ensure they get the services 
and care needed (Lundberg et al. 2020). 

5.2 The Role of Remote Sensing in Geriatric Health 

Monitoring 

5.2.1 Definition and Fundamentals of Remote Sensing 

in Healthcare 

In modern times, remote sensing technology has emerged as a transformative tool 
in many sectors including healthcare in general, and more so in the monitoring and 
management of geriatric health (Ajaz et al. 2022). In healthcare, remote sensing 
refers to the different high-tech collection and analytical methods for gathering data 
on the health status of patients and/or environmental conditions over distances. It 
encompasses a host of technologies-satellite imaging, aerial photography, and sensor 
networks-that may be applicable to the monitoring of vital signs, the detection of 
falls, the assessment of cognitive status, and the exploration of the environment 
surrounding the health of the older adults (Hajela 2023). It helps integrate remote 
sensing into geriatric care for improving the quality not only of health care itself but 
even health management is made more proactive, thus ensuring betterment in the 
quality of life during later life.
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5.2.2 Key Applications in Geriatric Care 

One of the significant applications of remote sensing in the context of geriatric 
health surveillance is the continuous monitoring of vital physiological parameters, 
such as heart rate and blood pressure. Wearable technology within remote monitoring 
systems can measure vital signs of health unceasingly and allow health professionals 
to detect anomalies that may indicate a deterioration in health status. For instance, 
studies have shown that the use of mobile health (mHealth) solutions significantly 
improves the management of chronic diseases among the older individuals through 
the timely medical intervention and reduction in hospitalization rates (Anbazhagan 
et al. 2020). 

Furthermore, the adoption of telehealth services has been proven to increase access 
to health services among older patients, particularly within those areas with scarce 
health resources in rural settings (Ajaz et al. 2022). The ability to monitor vital signs 
from a distance would give patients the opportunity for increased self-management 
of their health, while at the same time allowing for prompt intervention by caregivers 
for any disturbing changes in the course of their illness. 

Another critical application of remote sensing in geriatric health is fall detection 
and prevention, a major concern for older adults (Horta Reis da Silva 2022; Reis  
da Silva 2023a). Such falls result in a severe kind of injury, which includes but 
is not limited to fractures and head traumas. It is also considered one of the top 
class morbidity and mortality factors in older adults (Reis da Silva 2024f). Remote 
monitoring of older people’s activities within their homes or assisted living facilities 
may also use other motion detection devices and other video analytical tools to 
monitor older people (Reis da Silva 2023b). By analysing motion, these systems can 
detect events signifying a fall and alert caregivers to take action. Research indicates 
that the implementation of fall detection systems can reduce the incidences of falls 
and improve the lives of independent older individuals significantly (Hajela 2023). 
Furthermore, environmental sensors, through observation of lighting and surface 
conditions elements, may apply to further reduce fall incidents by giving real-time 
feedback to both the patients and the caregivers. 

Another place where the remote sensing technology is very intrinsic to the care 
given is in cognitive health assessments (Fortuna et al. 2019). Cognitive decline 
is a factor among older adults, and as such, it requires early detection to curtail 
the disorder effectively. Remote sensing instruments include cognitive assessment 
applications and virtual reality systems that allow the performance of cognitive eval-
uations by non-invasive means. This could be done by offering the patient various 
forms of entertainment while assessing cognitive functions such as memory, atten-
tion, and problem-solving, therefore providing substantial information about their 
condition (Fortuna et al. 2019). Additionally, the integration of artificial intelligence 
in these assessments can enhance the accuracy of cognitive evaluations by analyzing 
patterns and trends over time, allowing for personalized care plans tailored to the 
individual needs of older patients (Javadi-Pashaki et al. 2021).
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Indeed, environmental monitoring is considered a very important part of geriatric 
health, which remote-sensing technologies can considerably enhance. Environmental 
factors, including air quality, temperature, and humidity, are quite easily affecting 
factors of older’s health and wellbeing, especially in cases of prior disability (Chamat 
et al. 2021). Remote sensing technologies allow observation of environmental param-
eters continuously to obtain valid current data related to healthcare decision support. 
The findings indicated that poor air quality has been related to the exacerbation of 
respiratory diseases among the older individuals, meaning the increasing rates of 
hospitalisation (Chamat et al. 2021). It is the beginning of remote-sensing technolo-
gies observing environmental condition applications that allow healthcare practi-
tioners to implement preventive strategies, such as modifying indoor air quality or 
temperature regulation, to make home environments for the safety of the geriatric 
population. 

Besides, the introduction of remote sensing technologies into the control of geri-
atric health corresponds to the general tendency of making medicine personalised and 
patient-oriented. As health is becoming an ever-evolving field, much emphasis has 
been laid on tailoring interventions to meet the unique needs of individual patients. In 
this regard, remote sensing will help health professionals with massive data that will 
improve decision-making and development of care plans. For instance, data from 
EHRs integrated with data collected by remote monitoring will offer a much finer 
resolution of the patient’s health trajectory. Secondly, remote-sensing technology has 
increasingly become a strategic tool in many fields, including healthcare, particularly 
in aged care health management and monitoring (Chamat et al. 2021). 

In general, remote sensing is understood as a health care service that utilises 
advanced technologies for the acquisition and analysis of information about the state 
of the patients’ health and the ambient environment from a distance (Anbazhagan 
et al. 2020). The technology area consists of various methods-satellite images, aerial 
photography, and sensor networks-that alone might be used for patient monitoring of 
vital signs, detection of falls incidents, cognitive health assessments, or the study of 
ambient variables affecting the welfare of the older adults. On-site sensing technology 
in geriatric care boosts the quality of health care services and allows taking up a more 
active attitude to health management that can surely raise the quality of life among 
the older people (Anbazhagan et al. 2020). 

Another very important application of remote sensing in geriatric health moni-
toring involves the continuous monitoring of life parameters like heart rate and blood 
pressure. Wearable devices can enable remote monitoring systems to continuously 
track vital signs of patients and thus facilitate early detection of abnormal readings, 
which would imply deterioration of health status. For instance, studies have shown 
that mHealth technologies can significantly improve the management of chronic 
diseases in older patients by facilitating timely interventions that reduce admission 
to hospitals (Anbazhagan et al. 2020). 

Furthermore, the inclusion of telehealth services has increased access to care for 
older patients, particularly in rural communities with more limited resources within 
the healthcare system (Ajaz et al. 2022). The ability to monitor vital signs remotely 
not only empowers patients to take an active role in their health management but
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also enables caregivers to respond promptly to any alarming changes in the patient’s 
condition. Another critical use of remote sensing in geriatric health is in the detection 
and prevention of falls, which is among the major concerns amongst older population 
(Reis da Silva 2024f). Injury from falls among older adults often involves a severe 
fracture of bones and head injuries apart from being a leading cause of morbidity 
and mortality in older adults (Reis da Silva 2023a, 2024f). This can be achieved 
through remote sensing technologies, such as motion sensors and video analytics, that 
monitor the movements of older individuals within residence or care environments 
(Hajela 2023). These systems monitor these different activities, enabling them to 
identify fall risk activities and alert the caregiving staff of a situation where a patient 
may have fallen. Researchers believe that the implementation of such fall detection 
systems can reduce the occurrence of falls and increase the safety of older patients 
living independently (Hajela 2023). Besides, the number of fall incidents could be 
minimised much more by using environment sensors, like monitoring factors such 
as light and floor conditions in providing direct feedback to patients and attendants 
(Reis da Silva 2023c). 

In addition, the area of geriatric care utilises remote sensing technology in the 
evaluation of cognitive health. The older population has considerable instances of 
cognitive loss; hence, early detection offers an intervention key. Remote sensing 
technologies, such as cognitive assessment applications and virtual reality platforms, 
have the potential to enable cognitive evaluations without invasive procedures. These 
innovative tools can involve patients in interactive activities that measure memory, 
attention, and problem-solving abilities, thereby offering significant insights into 
their cognitive well-being (Fortuna et al. 2019). 

Moreover, the integration of AI in such assessments can ensure greater accuracy 
regarding cognitive diagnostics through pattern and trend analysis over time, thus 
helping in focused care planning according to the specific requirements of each older 
individual (Javadi-Pashaki et al. 2021; Reis da Silva 2025a, b). 

Environmental monitoring constitutes a crucial element of geriatric health that 
can be considerably improved via remote sensing technologies. Such factors include 
air quality, temperature, and humidity that may drastically affect the overall health 
of the older residents, especially those with predisposing illnesses. These ambient 
factors may be continually monitored through a remote-sensing system installed in 
a specific area, which delivers current data that are helpful in decision-making in 
healthcare. The literature shows that air quality can impact the exacerbation of respi-
ratory diseases among older adults, which has been associated with higher hospital 
admissions (Chamat et al. 2021; Reis da Silva 2025c). 

By applying remote sensing to observe environmental factors, health professionals 
can mobilise prevention strategies that will adjust the indoor air quality or adjust the 
indoor temperature configuration to make homes a safer place for the older people. 
Besides, the inclusion of remote-sensing technologies into geriatric health moni-
toring also reflects a larger trend toward personalised and patient-centred treatment 
(Chen et al. 2019). As the transformation of the healthcare environment continues, 
increasing attention is being placed on tailoring interventions to meet patients’ unique 
needs. In this transformation, remote sensing plays a key role in feeding extensive
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data to practitioners to support decision-making processes and care strategies. For 
instance, integrating EHRs with remote monitoring information can enhance the 
understanding of the patient’s health course and therefore support better-informed 
clinical decisions (Chen et al. 2019; Reis da Silva 2025d). 

This holistic approach to caring for geriatric patients provides improvement not 
only in health outcomes but also allows the older patients to feel independent and 
more empowered. 

5.3 Current Technologies and Implementations 

5.3.1 Review of Existing Remote Sensing Technologies in Use 

The integration of remote sensing technology into old-age health care would mean 
a raised standard of health, with improved awareness of healthy living to create a 
better quality of life for the geriatric population. 

5.3.1.1 Wearable Devices 

Wearable technology, such as smartwatches and health monitoring systems, has 
become prominent in the oversight of geriatric health (Suwanthanma et al. 2019). 
These contain sensors that can continuously monitor vital signs, levels of physical 
activity, and a variety of other health-related parameters in real time. For instance, 
smartwatches can monitor heart rate and blood pressure and even detect abnormal 
heart rhythms. It thus provides vital information that may be forwarded to doctors 
and other clinicians (Suwanthanma et al. 2019). These authors present the ease with 
which wearable technology allows the older people to maintain their independence 
but still ensure that their health is constantly monitored (Reis da Silva 2025e). 

Furthermore, studies have shown that wearable technology can even facilitate 
adherence to healthy behaviour among older adults. For example, one mobile appli-
cation implemented in a care home to monitor daily exercise levels was able to 
demonstrate that such systems go a long way toward improving activity levels 
among older residents in the care home setting (Joosen et al. 2018). Such inno-
vation helps promote not only physical but also mental health, as social interaction 
and engagement in physical activities become easier. The advancement of wearable 
technology has facilitated the emergence of novel innovations, including fall detec-
tion systems embedded within these devices (Reis da Silva 2024f). These systems 
employ accelerometers and gyroscopes to identify falls and promptly notify care-
givers or emergency services (Hu 2023). This functionality is essential, given that 
falls represent a predominant cause of injury in the geriatric population, and prompt 
intervention can markedly diminish the likelihood of adverse outcomes (Reis da 
Silva 2025f).
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Artificial intelligence integrated into wearable technology enhances the wear-
ables’ functionalities considerably by allowing predictive analytics, through which 
potential health problems can be identified before they worsen (Lin et al. 2023). 

5.3.1.2 In-Home Monitoring Systems and Smart Sensors 

In-home monitoring systems with intelligent sensors aim to develop a living space 
suitable for older adults (Reis da Silva 2023b). Such systems can monitor various 
parameters of movement, temperature, air quality, among others, to make that space 
healthy enough for living. For example, smart home systems can detect changes in 
the pattern of daily activities by residents, such as periods of no activity that may 
indicate possible health issues or accidents (Maswadi et al. 2020). Empirical evidence 
demonstrates that smart home technologies have actually helped the independent 
living of older adults. A study in this regard focused on a smart home model that 
could detect safety and risk parameters with much efficiency among older residents 
and thus always offered real-time warnings to caregivers (Chiridza et al. 2019). In 
this regard, the predictive mode of monitoring makes sure about better safety as 
well as addressing the concern of family members about their older relatives staying 
alone. 

Furthermore, the use of IoT technology in home monitoring systems will enable 
communication between devices without any interruptions. For instance, a home 
environment monitoring system might use a cloud platform to both collect and 
analyse data from various sensors, hence providing detailed information about the 
resident’s health and safety to caregivers (Cai 2023). This level of integration is 
vital to establishing a clear understanding of an older person’s health status, hence 
enabling timely interventions when necessary. 

5.3.1.3 Telehealth and Remote Monitoring Platforms 

Telehealth has fundamentally transformed the delivery of healthcare services to 
senior patients, especially regarding remote monitoring practices (Gong et al. 2022). 
Telehealth platforms facilitate virtual consultations for healthcare providers, allowing 
for the remote assessment of patients’ health and the provision of timely interven-
tions, all without necessitating in-person visits (Gong et al. 2022). This approach 
proves particularly advantageous for older individuals who may experience mobility 
constraints or reside in isolated regions with restricted access to healthcare resources 
(Ceraulo et al. 2022). 

Application of telehealth systems has improved the health outcomes of the older 
population. Various studies have shown that telehealth services manage chronic 
diseases of older patients with reduced readmission to the hospital and improved 
overall health status (Gong et al. 2022). On the other hand, telehealth platforms have 
the capability to improve communication between patients and caregivers that would 
ensure timely attention to changes in their health status and possibly reduce loneliness
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and social isolation (Reis da Silva 2024g). Increased integration among telehealth 
and wearable devices has also improved the efficiency of health monitoring remotely. 
For instance, the integration of wearable health monitoring technology and telehealth 
services provides the immediate vital signs and activity metrics of the patients to the 
healthcare practitioner for making informed decisions for the care of the patients 
(Tang et al. 2019). The integration between telehealth and wearable devices reflects 
an important advancement of the care of health among geriatric patients (Reis da 
Silva 2025g). 

5.3.2 Empirical Evidence and Illustrative Examples 

from Current Nursing Practice 

Many case studies show the appropriate use of remote sensing technologies in the 
nursing domain. The use of a smart ball-driven serious game to measure grip strength 
for independent living older people is a notable example. This innovative approach 
not only encourages patients to engage in physical activities but also provides 
essential data on their strength and movement, which will be useful in tailoring 
rehabilitation programs accordingly (Lunardini et al. 2020). 

Another case study implemented an integrated remote health monitoring system 
at a nursing home; the system utilised a combination of wearable devices, in-home 
sensors, and telehealth platforms to enable the sustained monitoring of resident 
health. These findings showed significant reductions in the number of emergency 
department transfers along with hospitalisation, which will reveal the effectiveness 
of integrated remote monitoring in yielding better health outcomes for seniors living 
within nursing facilities (Zhiling, and Fuchun 2022). 

The idea also sounds very encouraging in developing a smart home environment 
for independent living older adults. Research has indicated that such environments 
are capable of effectively assisting in risk surveillance and improving the overall 
quality of life for older residents by delivering prompt notifications and enabling 
interaction with caregivers (Arar et al. 2021). This method not only enhances safety 
but also promotes a sense of autonomy in older individuals, permitting them to uphold 
their independence while accessing essential support. 

5.4 Benefits and Challenges in Integrating Remote Sensing 

Technologies 

Integration of remote sensing technologies into healthcare, in particular, geriatric 
care, has both advantages and challenges that face it in equal measure. Accom-
plishment of the remote sensing technologies’ implementation in the monitoring of 
geriatric health calls for an understanding of attendant benefits and challenges.
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5.4.1 Advantages of the Use of Remote Sensing Technologies 

5.4.1.1 Improved Patient Outcomes and Preventive Care 

Some of the major benefits of integrating remote sensing technologies into the field 
of geriatric care are improved patient outcomes enabled by early interventions (Al-
Naher et al. 2022). Remote monitoring systems facilitate the ongoing observation 
of vital signs and health indicators, thus allowing healthcare professionals to iden-
tify potential health concerns prior to their development into severe conditions. For 
example, wearable technology that tracks heart rate, blood pressure, and physical 
activity can notify caregivers of irregularities that might necessitate prompt inter-
vention (Hardin et al. 2018). This cannot only enhance healthcare quality but also 
cut down hospital readmission and emergency department admission as it would 
allow for timely intervention using the latest available data (Al-Naher et al. 2022). 

Moreover, studies also documented that older patients who have used remote 
health monitoring systems reported to have better satisfaction and also improved 
health outcomes (Al-Naher et al. 2022). For example, it was highlighted in a system-
atic review that the integration of remote health monitoring significantly reduces the 
development of complications in patients with chronic diseases, such as heart failure, 
chronic kidney failure and diabetes (Esquivel et al. 2018; Reis da Silva 2024h). In 
enhancing the management of chronic diseases through early detection and timely 
intervention, remote sensing technologies contribute to an increase in the quality of 
life of older adults. 

5.4.1.2 More Data-Driven Clinical Decision Making 

Remote sensing technologies grant healthcare practitioners access to extensive 
datasets that can be scrutinised to guide clinical decision-making processes. The 
incorporation of artificial intelligence (AI) and machine learning algorithms within 
remote monitoring systems facilitates the examination of intricate datasets, thereby 
empowering healthcare professionals to discern trends and patterns that might not 
be readily visible (Hardin et al. 2018). 

It has indeed helped in making clinical decisions evidence-based by embedding 
data-driven insights into informed treatment plans and interventions. For instance, 
predictive analytics can be used to determine the fall likelihood of older patients 
based on their mobility trends and ambient environmental conditions (Martínez-
Martín and Costa 2021). Data derived from wearable devices and intelligent sensors 
provides healthcare professionals with the ability to create personalised care plans 
that address a patient’s specific needs and risks. This level of personalisation allows 
for improved patient outcomes and better implementation of a patient-centered 
approach in healthcare service delivery.
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5.4.1.3 Increased Patient Safety and Independence: 

The use of remote sensing technologies significantly enhances patient safety, particu-
larly among the older who live independently. For example, fall detection systems use 
motion sensors combined with wearable devices to monitor the movement of older 
patients (Reis da Silva 2023a). In the event of a fall, such systems are able to trigger 
an alarm automatically via caregivers or an emergency response system, ensuring 
that assistance is deployed in a timely manner (Shahbazi et al. 2021). This aspect is 
quite critical, considering that timely interventions can prevent serious injuries and 
other complications that result from falls. 

In addition, remote sensing technologies improve the independence and self-
sufficiency of the older individuals. Smart home sensor-enabled systems can monitor 
environmental conditions, such as temperature and quality of air. This can allow real-
time responses for the patients themselves and their caregivers too (Ahmadi 2023). 
With this information, seniors can stay comfortably and safely at their homes while 
receiving the needed support from a caregiver (Reis da Silva 2023a, b). 

These remote sensing technologies promote autonomy and make a great contri-
bution to improved mental health and quality of life for aged patients. 

5.4.2 Challenges in the Integration of Remote Sensing 

Technologies 

5.4.2.1 Problems with Data Accuracy and Reliability 

Notwithstanding those tremendous benefits that come with remote sensing technolo-
gies, concerns about accuracy and reliability remain paramount. The effectiveness 
of remote monitoring systems depends mainly on the quality of the data collected. 
Incorrect or inconsistent data could lead to misinterpretation and inappropriate clin-
ical decisions that could put a patient’s safety at risk (Ahmadi 2023). For instance, 
wearables can provide incorrect measurements because of technical faults or user 
error; this can lead to false alarms or neglected health issues. 

Moreover, the integration of different data sources brings with it challenges that 
may contribute to inaccuracies in health assessments. Variations in data formats and 
standards across devices and platforms could impede the flow of information and 
further complicate the process by which health professionals aim to gain compre-
hensive insights into a patient’s condition (Wang and Wang 2015). Addressing these 
issues of data accuracy and reliability is instrumental in the development of remote 
sensing technologies in geriatric care.
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5.4.2.2 Ethical Implications and Privacy Concerns About the Use 

of Data and Patient Consent 

The application of different remote sensing technologies raises several ethical and 
privacy concerns on the use of data and consent from patients. The acquisition and 
exchange of such vital health information should be handled with strict data protec-
tion techniques that will ensure the privacy of the patient data. Most older adults 
however have little knowledge about the interpretation of their data hence they 
may provide consents for health information sharing unaware of the risk involved 
(Esquivel et al. 2018). 

There is also a significant risk associated with data breaches and unauthorised 
intrusion into personal health information. As remote-sensing technologies continue 
to permeate everyday life, healthcare professionals should raise awareness on the 
implementation of efficient security measures while protecting patients from cyber 
threats (Biswas 2021). For all patients, it should be emphasized that proper informa-
tion about rights related to their data use and consent is necessary for the continuity 
of trust in remote health monitoring systems. 

5.4.2.3 Usability Issues of Older People 

The difficulties associated with usability represent a considerable obstacle to the 
effective incorporation of remote sensing technologies within the realm of geri-
atric care. Numerous older individuals may encounter difficulties stemming from 
the intricate nature of contemporary technologies, resulting in feelings of frustra-
tion and a withdrawal from remote monitoring systems (Bi 2020). Various elements, 
including inadequate technological familiarity, cognitive deterioration, and physical 
limitations, can impede older adults’ capacity to proficiently operate remote sensing 
devices (Schmidt et al. 2018). 

In addressing the usability challenges identified, there is a need for the develop-
ment of remote sensing technologies that are sensitive to the needs of older people. 
This includes the development of intuitive interfaces, clear instructions, and even 
training and support so that older people are able to use new technologies profi-
ciently. According to Jin and Shi (2022), this may involve the involvement of older 
people in the design process to ensure that the remote sensing systems are tailored 
to their needs and capabilities, enhancing their usability and effectiveness. 

In trying to integrate these remote-sensing technologies into healthcare, partic-
ularly geriatric care, a number of technical, ethical, and regulatory challenges first 
need to be overcome for proper implantation and patient safety. This paper discusses 
some of the technical barriers, including interoperability and data integration; ethical 
concerns, including consent and protection of privacy; and how to maintain a balance 
between technological monitoring while trying to preserve patient dignity. The 
present work takes into consideration the remote sensing of health care from the 
point of view of regulatory and compliance issues.
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5.5 Technical, Ethical, and Regulatory Considerations 

5.5.1 Technical Barriers 

5.5.1.1 Interoperability Issues 

One major barrier-technical-challenges in the integration of such technologies into 
health care remains the ability of interoperability (Kheirkhahan et al. 2019). Funda-
mentally, interoperability implies that various systems, equipment, and applications 
can communicate with each other and transit information smoothly. In the case of 
remote patient monitoring, this issue becomes very critical since many devices and 
platforms are used within health care settings. 

For instance, different manufacturers’ wearables may store data in proprietorial 
data formats, which are difficult to integrate into one system. Daley et al. (2019) 
illustrated that incomplete data will affect clinical decisions since inability to stan-
dardise data will impede the acquisition of complete patient data by health providers. 
Efforts like the Integrating the Healthcare Enterprise framework have been realised 
in promoting interoperability through setting standards for the interchange of health 
information (Daley et al. 2019). However, pursuing full adoption of such standards 
remains challenging as many health organisations may lack the proper resources or 
technical expertise for successful integration. 

Moreover, the swift progression of technological innovations in remote sensing 
instruments frequently surpasses the formulation of corresponding standards, 
resulting in persistent interoperability challenges (Kheirkhahan et al. 2019). 

5.5.1.2 Data Integration Issues 

Data integration is one of the main technical challenges associated with the adoption 
of the remote sensing technologies in the health industry. According to Fu (2023), 
information from wearable devices, EHR, and telehealth has to be integrated in order 
to attain a whole understanding of the condition of the patient. However, the extent 
of the volume and complexity of data emanating from such systems could well be 
beyond the capacity of the existing healthcare infrastructure; therefore, it is an issue 
in managing and analysing the data (Fu 2023). 

The lack of uniformity in data formats, not to mention even protocols, can be an 
obstacle to integration. For instance, remote monitoring systems generate data into 
different formats, some of which pose certain complications in their effective integra-
tion and analysis. Daley et al. (2019) add that addressing such issues of data integra-
tion requires the development of robust data management systems that are capable 
of managing large volumes of varied data without compromising data accuracy and 
reliability.
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5.6 Ethical Considerations 

5.6.1 Consent and Safeguarding Privacy 

The use of remote sensing technologies in the healthcare industry introduces signif-
icant ethical concerns; the two most prevalent issues involve patient consent and 
personal privacy. Patients should be adequately informed about the collection of 
their health information, the intended use of that information, and the intended disclo-
sures; they should have given their consent prior to participating in telemonitoring 
programs. However, many older patients are poorly educated about the implications 
related to the disclosure of their information; this could lead to potential problems 
with regard to consent (Baratta et al. 2022). 

This could be considered an important issue because collecting and sharing sensi-
tive health-related information can put the patients at risk of data breach and unautho-
rised access. Hence, the healthcare organisations should implement stringent security 
measures to ensure data protection for the patients and assure the compliance with the 
relevant regulatory frameworks related to patient data protection, such as HIPAA in 
the United States, as pointed out by Nicolau et al. (2023). It is also very important to 
provide information on the state of patients’ data usage rights and the consideration 
for maintaining privacy. 

5.6.2 Reconciling Technological Surveillance with Patient 

Respect 

Another ethical issue in the integration of remote sensing technologies pertains to 
weighing the balance between technological monitoring and patient dignity. As much 
as remote monitoring enhances patient safety and results in better health outcomes, it 
may also be associated with negative feelings of surveillance and erosion of autonomy 
among the elderly (Baratta et al. 2022). This, however, should make healthcare 
providers sensitive to the very idea of remote monitoring, being respectful and valuing 
of patients in their opinions and thoughts throughout the whole process. 

In response to this issue, it is imperative for healthcare organisations to emphasise 
patient-centred methodologies that engage patients in the decision-making processes 
related to their care. This entails a thorough discussion of both the advantages and 
drawbacks of remote monitoring technologies, as well as providing patients with 
the opportunity to articulate their preferences and concerns (Baratta et al. 2022). 
By cultivating transparent communication and collaborative practices, healthcare 
providers can alleviate perceptions of surveillance and enhance patients’ sense of 
autonomy.
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5.7 Regulatory and Compliance Considerations 

5.7.1 Regulatory Structures Relating to Remote Sensing 

Technologies 

The integration of remote sensing technologies into the care industry is subject to 
various regulatory mechanisms that govern the use of medical devices and health 
information. In the United States, the Food and Drug Administration plays a critical 
role in regulating medical devices, including wearable health monitors and remote 
patient monitoring systems (Nicolau et al. 2023). Such devices must undergo rigorous 
testing and evaluation before they are released for use by consumers to ensure their 
safety and effectiveness in application (Mallinis et al. 2020). On top of that, healthcare 
establishments must follow the policies related to data privacy and security, such as 
HIPAA, which established standards for the protection of patient data. 

Compliance with these policies is important to maintain patients’ trust and ensure 
that remote-sensing applications are implemented in an ethical manner in health-
care (Nicolau et al. 2023). The regulatory landscape is, however, quite complex to 
navigate, and this poses serious difficulties for healthcare providers, particularly the 
smaller entities with limited means. 

5.7.2 Compliance with Data Protection Legislation 

Considering that remote sensing technologies generate significant volumes of health-
related data, strict adherence to data protection regulations is increasingly important. 
It has become necessary to create appropriate data governance frameworks by health-
care organisations in describing modes of patient data collection, storage, and dissem-
ination. It will involve anonymisation of data where possible, establishing appropriate 
controls in access to information, and frequent auditing to ensure compliance with 
legislation on data protection (Nicolau et al. 2023). 

Moreover, health professionals have to be aware of the ever-evolving legislative 
framework regarding data protection and privacy. For instance, the General Data 
Protection Regulation within the European Union sets very strict criteria on how 
personal information is collected and processed, which may impact the adoption 
of remote sensing technologies into health settings (Mallinis et al. 2020). Due to 
this fact, the management of an organisation should not wait but proactively seek 
to achieve change in practice in order not to face any potential legal and economic 
repercussions (Reis da Silva 2024i).
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5.8 New Trends and Innovations in Geriatric Care 

Geriatric care is a fast-evolving domain for several reasons, primarily because of 
the rapid changes mandated by technology, particularly in fields related to remote 
sensing and wearable technology (Mirjalali et al. 2021; Reis da Silva 2024b; Reis  
da Silva and Mitchell 2024). 

5.8.1 Emerging Sensor Technologies and Wearable Advances 

New sensor technologies are at the forefront of transforming elders’ care. Wear-
able technologies, such as smartwatches and devices used for health monitoring, 
have significantly evolved, making continuous health monitoring and real-time data 
collection possible (L’Hommedieu et al. 2019; Reis da Silva 2025f). Such devices 
are embedded with advanced sensors that can monitor various physiological param-
eters of a patient, like heart rate, blood pressure, oxygen saturation, and levels of 
physical activity (L’Hommedieu et al. 2019). Integration of wireless communication 
technologies makes them capable of sharing such wearables data to facilitate timely 
interventions and personalised care with the health care provider. 

Recent progress within sensor technology has allowed for the creation of multi-
functional wearables that can track multiple health parameters simultaneously. Some 
were developed with state-of-the-art biosensors capable of even detecting biochem-
ical markers by analysing sweat, thus providing important details related to hydra-
tion status, electrolyte balance, and metabolic function among others (Mirjalali et al. 
2021). This feature is quite useful in an older population, as such health conditions can 
be monitored in a non-invasive fashion, which otherwise may require more invasive 
methods of investigation (Reis da Silva 2025a). 

Furthermore, the emergence of adaptable and fabric-based sensors has created 
novel opportunities for the integration of wearable technology within the realm of 
geriatric care. Such sensors can be seamlessly incorporated into garments, thereby 
enhancing comfort and minimising intrusiveness for senior users (Pérez and Zeadally 
2021). As these wearable devices evolve to become increasingly user-friendly and 
visually appealing, it is anticipated that their acceptance among older adults will rise, 
consequently improving their overall efficacy in health monitoring and management 
(Reis da Silva 2025a, b). 

5.8.2 Role of Artificial Intelligence and Machine Learning 

The fields of artificial intelligence and machine learning are set to transform geriatric 
healthcare by augmenting predictive abilities and refining clinical decision-making 
processes. Algorithms driven by AI possess the capacity to scrutinise extensive
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datasets produced by wearable technology and various health monitoring systems, 
thereby detecting patterns and trends that could signify potential health concerns 
(Javadi-Pashaki et al. 2021). For instance, machine learning models can predict the 
probability of falls among older patients by analysing data related to their locomo-
tion, environmental factors, and any previous history of falls (Javadi-Pashaki et al. 
2021; Reis da Silva 2023a, 2024j, 2025h). 

The integration of AI in geriatric care also facilitates personalised treatment plans 
tailored to the unique needs of each patient. By leveraging predictive analytics, 
healthcare providers can anticipate health deteriorations and implement preventive 
measures before complications arise (Reis da Silva 2024k, l). This proactive approach 
not only improves patient outcomes but also reduces healthcare costs associated with 
emergency interventions and hospitalisations (Javadi-Pashaki et al. 2021). Besides, 
AI can facilitate telehealth services by carrying out simple tasks, including setting 
appointments or sending follow-up messages. In this way, healthcare professionals 
will be free to dedicate their time to providing quality healthcare services and ensure 
that the patients are actively involved in managing their health condition. Javadi-
Pashaki et al. (2021) argue that once AI technologies are developed further, more 
active use of AI in geriatric care is likely to result in more effective and efficient 
healthcare provision. 

5.8.3 Growth and Development of the Telehealth Service 

The COVID-19 pandemic further accelerated this adoption of telehealth services, 
pointing to the potential for telehealth to enhance access to care among older adults. 
Telehealth provides health professionals with an avenue through which they can offer 
virtual consultations, manage patients remotely, and deliver clinical care without 
necessarily relying on physical appointments (Chen et al. 2022). For older adults 
with potential mobility complications or those living in remote areas with limited 
healthcare facilities, this is a welcome development. 

With the development of telehealth services, increasing attention has been paid 
to the integration of remote monitoring technologies into telehealth platforms. Such 
integration enables healthcare professionals to access, in real time, wearable device 
data during virtual consultations, which further improves the quality of clinical deci-
sions (Chen et al. 2022). For instance, a healthcare professional can review a patient’s 
vital signs and level of physical activity during a telehealth appointment, thus facili-
tating a more comprehensive assessment of his or her general condition (Reis da Silva 
2025c, d). In the future, more specialist telehealth services, such as mental health, 
rehabilitation, and chronic disease management, will be added. It would contribute 
to the comprehensive care of elderly patients with several health needs and hence 
improve their quality of care (Chen et al. 2022). With continued advancements in 
technology, telehealth in the future shall be an integral part of improving accessibility 
and outcomes for the elderly (Reis da Silva 2025e).
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5.8.4 Predictive Analytics and Personalised Care Models 

Predictive analytics are considered a strong weapon in the armamentarium of geriatric 
care, truly enabling practitioners to anticipate complications that may arise in older 
adults and tailor interventions to prevent such occurrences (Reis da Silva 2024k, l). 
By analysing historical health records with real-time data from wearable devices, 
predictive models identify individuals who are at risk for experiences such as falls, 
readmission to the hospital, and exacerbation of chronic diseases (Javadi-Pashaki 
et al. 2021). In this way, timely interventions may prevent complications and improve 
outcomes. 

Personalised care models, as underpinned by predictive analytics, continue to find 
applications in geriatric care settings. These care models emphasise what differen-
tiates the individual needs and preferences of each patient, taking into account the 
particular aspects of their medical history, lifestyle behaviour, and social determi-
nants of health (Reis da Silva 2024k; l). For example, a personalised care plan for an 
aged patient with several comorbidities may comprise certain interventions relating 
to medication management, physical activity promotion, and nutrition counselling 
that take into account predictive analytics (Javadi-Pashaki et al. 2021). Predictive 
analytics embedded in geriatric care ensure better outcomes for the patient while 
also promoting a more patient-centred approach to healthcare. Also, by involving 
the patients in the planning and decision-making about their care, healthcare profes-
sionals are able to achieve higher involvement and adherence to prescribed treatment 
plans, thereby yielding better health outcomes (Javadi-Pashaki et al. 2021). 

5.9 Strategic Recommendations for Nursing Practice 

With further developments in remote-sensing technologies and telehealth services, 
nursing practice must position itself to effectively integrate such innovation into care. 

5.9.1 Approaches for Effective Execution 

Interdisciplinary Collaboration: Seamless integration of remote sensing technolo-
gies into nursing practice will require interdisciplinary collaboration by health care 
professions. Developing and implementing processes for the integration of wear-
ables and telehealth platforms in providing care to geriatric patients will involve the 
collaborative efforts of all nurses, physicians, and technology specialists (Reis da 
Silva 2024b, j). 

Patient Education and Engagement: There should be a system for educating the 
patient about the benefits and functionality of remote monitoring technologies to 
increase acceptance and engagement. Give clear instructions on how to use wearable
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devices and a telehealth platform so the patients are confident in managing their 
health (Reis da Silva 2024b; j, l). 

Personalisation of Care Plans: Nursing should be oriented to personalise the care 
plan according to the needs and preferences of the patient. Using the data provided by 
remote monitoring technologies, nurses can offer appropriate interventions related 
to specific health concerns and improve self-management capability in patients (Reis 
da Silva 2024k; l). 

5.9.2 Training for Health Professionals

• Technology Training: The health professional should be trained on the use of 
remote-sensing technologies and telehealth systems. A training curriculum for 
such technology could include wearable device functionality, how to interpret 
data, and best practices for remote monitoring of patients (Reis da Silva 2025a, 
b).

• Data Management Skills: With increased dependence on wearable devices by 
healthcare providers for their data, the need to undertake training in data manage-
ment and analytics is compelling. Nurses should be prepared with the necessary 
skills to analyse and interpret the data that will support clinical decisions (Reis 
da Silva 2025f).

• Communication Skills: This is paramount because a telehealth consultation 
should, therefore, be complemented with effective communication. Nurses, there-
fore, need training on how to make virtual visits and discuss health issues with the 
patients and handle concerns about the use of technology (Reis da Silva 2025h). 

5.9.3 Principles for Ethical and Patient-Centred Application

• Informed Consent: Such programs of remote monitoring demand that the health 
professional first obtains informed consent from the patients. About the use, 
sharing, and protection of data pertaining to the patient, due information must 
be provided (Reis da Silva 2024b).

• Privacy and Security: These two factors are particularly paramount in protecting 
patient privacy and ensuring data security. Healthcare organisations should take 
strong measures to secure sensitive health information captured through remote 
monitoring technologies (Reis da Silva 2024b).

• Patient-Centred Care: Application of remote sensing technologies should hold 
the dignity and autonomy of a patient paramount. Healthcare providers should 
engage a patient in their care planning and decision-making, hence respecting the 
patient’s preferences and values (Reis da Silva 2024b, k).
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5.10 Conclusion 

The global ageing trend presents significant healthcare challenges that require inno-
vative solutions. Remote sensing technologies hold great promise in transforming 
geriatric care by providing valuable data and insights that can enhance the delivery 
of care and improve health outcomes for older adults. As the nursing profession 
continues to adapt to these changes, it is essential to integrate remote sensing into 
nursing education and practice to prepare future nurses for the complexities of caring 
for an ageing population. 

It can be used to revolutionise the monitoring of the health of the aged: vital signs, 
fall prevention, assessment of cognitive health, and environmental monitoring. It is 
believed that the use of such technology in health facilities will enhance not only 
the quality of care for the aged but also their proactive health management and 
intervention strategies, as treatment measures would be more personalised. With 
further growth in the population base of geriatric patients, the application of remote 
sensing technologies will be cardinal to ensuring the complicated health requirements 
of the aged patient are met and his safety secured in the digital health landscape, 
ultimately allowing for better clinical decisions to be afforded possible (Chen et al. 
2019). A multidimensional approach to the care provided has the twofold impact 
of improving health outcomes while providing a sense of independence to the older 
patient. 

Remote-sensing technology may change the face of geriatric health monitoring 
with regard to enhancing the observability of a patient’s vital signs, prevention of 
falls, assessment of cognitive ability, and monitoring of environmental parameters. 
The integration of such technologies into health management methodologies will 
not only raise the quality of care provided for older adults but also facilitate active 
management of health and focused interventions. In fact, against the backdrop of 
an ever-increasing older population, remote-sensing technologies will continue to 
be imperative to meet the increasingly complex health needs of the older adults and 
ensure their well-being in a digitally evolving health system. 

The cumulative application of different remote-sensing technologies in the care 
of older people holds immense potential for bringing dramatic change to their lives. 
Wearable technology, residential monitoring systems, and telehealth all aid in having 
an integrated approach toward health management by assuring timely intervention 
and promoting independent living. This will be very important, as this trend keeps 
on rising with the increase in the ageing population, to be able to provide for the 
complex health needs of older persons and protection in this increasingly digital 
world. 

The integration of remote sensing technologies in the care of the older adults 
seems a promising pathway toward improved patient outcomes, improved clinical 
decision-making, and enhanced patient safety and autonomy. Yet, several challenges 
related to data precision, ethics, and friendliness to the user have to be overcome 
in order to maximise the benefit of such technologies. Health care providers should 
focus on the development of reliable, secure, and easy-to-operate remote monitoring
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systems to enable remote sensing technologies to bring benefits in the quality of 
health care for older people. 

The integration of these remote-sensing technologies into health systems will 
bring in significant dividends in improved patient outcomes and quality of care 
for the older population. Full implementation will require resolution of technical 
issues relating to interoperability and integration, and a number of substantial ethical 
challenges relating to consent and privacy. More importantly, it is also important to 
adhere to the regulatory framework in order to ensure that the use of such technology 
is secure and ethical. By putting these considerations first, healthcare organisations 
can use the benefits of remote sensing technologies while preserving patient dignity 
and privacy. 
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Chapter 6 

Optimizing Groundwater 

Replenishment: A Geospatial Approach 

to Site Selection for Artificial Recharge 

in the Narmada River Basin, Madhya 

Pradesh 

Deepak Patle, Manoj Kumar Awasthi, and Shailesh Kumar Sharma 

Abstract Effective groundwater management is crucial for food security, water 

availability, and economic prosperity, given the global water shortage and the effects 

of a changing climate. Groundwater is a natural resource that is hidden underground 

and cannot be seen directly. As a result, mapping of this resource can be difficult. In 

light of the significant geological heterogeneity present in the Narmada River Basin, 

groundwater potential mapping is a highly complex and difficult task, and there 

is still much to explore. Therefore, this study aims to identify areas with ground-

water potential and suitable locations for artificial groundwater replenishment in 

the Narmada River Basin, India, by geospatial approach. The eight thematic factors 

geology, geomorphology, lineament density, land use/land cover, slope, soil texture, 

rainfall, and drainage density were taken for groundwater potential mapping. The 

Analytical Hierarchy Process (AHP) is a multi-criteria decision analysis method 

which used to delineate groundwater potential zones. Based on index values, the 

integrated map identified five classes of groundwater potential: very good, good, 

moderate, poor, and very poor. The classification was determined by index values, 

ranging from high to low. The groundwater potential zones were validated through 

well yield data procured from Bhujal-Bhuvan Portal and found very good accuracy. 

Next, a critical area for artificial recharge was identified within the study region. 

Suitable sites for artificial groundwater recharge structures as their locations were 

identified in critical areas of Narmada Basin with good accuracy, including 8431 

percolation tanks, 20,639 staggered contour trenches, 3582 nala bunds, and 54,803 

check dams. The strategic use of geoinformatics, coupled with a robust multi-criteria 

decision-making framework, proved instrumental in pinpointing ideal locations for 

augmenting groundwater recharge.
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6.1 Introduction 

One of the vital natural assets is groundwater, which is deposited in underground 

geological formations in the critical region of the earth’s foundations. It supplies water 

for residential, commercial, industrial, agricultural, and other expansion initiatives. 

Over the years, climate change and excessive groundwater extraction have exerted 

enormous pressure on the global groundwater supply. Hussein et al. (2017) states, 

as the global demand for potable water for human consumption, agriculture, and 

industry rises, so does the need to assess the potential and productivity of aquifers. 

A multitude of human and environmental factors influence the presence and supply 

of groundwater. The majority of tropical and temperate regions with concentrated 

populations and developed economies are plagued by significant groundwater issues 

(Singh et al. 2024). In a semi-arid nation like India, surface water sources may not 

always be readily available for various purposes, so residents of semi-arid regions 

must rely more heavily on subterranean supplies to survive (Awasthi and Patle 2019, 

2020; Singh et al. 2025). 

The Narmada River Basin has experienced a significant decrease in groundwater 

levels over the last ten years (2010–2019) (DGWR 2020). This decline is attributed 

to inconsistent rainfall and varied geological factors. To mitigate this problem, it 

is crucial to identify the most vulnerable areas within the basin and implement 

effective management strategies. Furthermore, potential sites for artificial ground-

water recharge structures should be determined to improve the overall groundwater 

situation. 

Recently, GIS-based studies have become increasingly popular in groundwater 

exploration (Sahu et al. 2024). This is because they are quick and provide direct 

insights into groundwater resources, aiding future planning and development (Patle 

and Awasthi 2019; Patle et al. 2020, 2022). There are so many RS-GIS based decision 

making approaches like Multiple techniques such as Multi Influencing Factor (MIF), 

Analytical Hierarchical Process (AHP), and machine learning models for assessing 

groundwater potential areas. In this study, we employed a combined approach of 

remote sensing, GIS, and AHP to delineate the groundwater potential zones. Total 

of 8 thematic maps including Geology, Geomorphology, Land Use/Land Cover, 

Lineament density, Drainage density, Rainfall, Soil, and Slope have been prepared 

and analysed for assessment of ground water potential zones. 

Groundwater potential in the Narmada River Basin has not been thoroughly inves-

tigated. This study aims to fill this knowledge gap by identifying areas with high 

groundwater potential, pinpointing critical zones for artificial recharge, and selecting 

optimal sites for various groundwater recharge structures using geospatial techniques.
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6.2 Materials and Methods 

6.2.1 Study Area 

The Narmada River is one of India’s longest rivers and travels through multiple 

states, including Madhya Pradesh. The Narmada River is approximately 1312 kms 

long, with approximately 1077 kms flowing through Madhya Pradesh (Fig. 6.1). 

The river begins in the Amarkantak highlands of Madhya Pradesh, travels through 

the state, then continues through Maharashtra and Gujarat before emptying into the 

Arabian Sea. Narmada River Basin lies between 21° 28′ 41.83′′ N–23° 38′ 4.81′′ N 

latitudes and 73° 58′ 15.89′′ E–81° 45′ 54.51′′ E longitudes. The total topographical 

area of the Narmada Basin in Madhya Pradesh is approximately 85,083 km2. It is  

one of the utmost substantial river basins in India due to its ecological, cultural, and 

economic significance. The Narmada basin population is predominately agrarian, 

with agriculture being the primary occupation of the local population. The basin is 

also home to several important wildlife reserves and protected areas, including the 

Satpura Tiger Reserve and the Pachmarhi Biosphere Reserve. 

Fig. 6.1 The location map of Narmada River Basin
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6.2.2 Data Collection 

The Narmada River Basin map has been developed based on the scanned map 

collected from MPWRD website (http://mpwrd.gov.in/) and digitized on a scale 

of 1: 50,000 scale. Elevation data with a 30-m resolution was downloaded from 

the USGS EarthExplorer (https://earthexplorer.usgs.gov/). This data (SRTM DEM) 

was used to generate maps of slope, drainage patterns, stream order, and drainage 

density. Geological (1:50,000 scale) and Geomorphological (1:250,000 scale) maps 

were obtained from the Bhukosh portal (https://www.gsi.gov.in/). Lineament data 

(1:50,000 scale) was manually extracted from a WMS link of the ISRO Bhuvan 

geoportal (https://bhuvan.nrsc.gov.in/) using QGIS 3.16 software. Soil texture infor-

mation was derived by digitizing soil map sheets (1:250,000 scale) collected from the 

National Bureau of Soil Survey and Land Use Planning (NBSS&LUP) in Nagpur. 

Normal monsoon rainfall data (0.25 × 0.25 degree grid) was acquired from the 

Climate Data Service Portal (CSDP) of the India Meteorological Department (IMD) 

in Pune (https://www.imdpune.gov.in/). To create a spatial map of land use and 

land cover, raw land cover tiles were acquired from the ESRI Sentinel Land Cover 

Explorer for the year 2021. The Sentinel Land Cover Explorer is a satellite imagery-

based portal that provides land cover data year wise with a spatial resolution of 10 m. 

The Bhujal-Bhuvan geo-platform was used to gather well yield data for observation 

wells. 

6.2.3 Procedure 

A comprehensive literature review identified eight key factors influencing ground-

water availability: geology, geomorphology, slope, lineament density, land use/land 

cover, soil texture, rainfall, and drainage density. Relevant data was collected, recti-

fied, and processed into thematic maps in GIS. These maps were standardized to a 

10-m spatial resolution. The Analytical Hierarchy Process (AHP) was used to priori-

tize and weight these factors. By integrating GIS and remote sensing techniques, each 

thematic map was ranked and reclassified. The weighted sum approach was applied 

to calculate the Groundwater Potential Index (GPI), which was then categorized into 

five zones: very good, good, moderate, poor, and very poor. 

To evaluate the reliability of the forecast results, it is essential to validate the 

resulted data after making any model or classified project (Das and Pardeshi 2018). 

In this research, Well Yield data may be used for the validation of Groundwater 

Potential Zones which can be extracted from the Bhujal-Bhuvan Portal. To validate 

our analysis, we randomly selected 100 locations on the Ground Water Prospecting 

Zone (GPZ) map using ArcGIS. For each point, we extracted the existing class or zone 

information from the platform. Additionally, we obtained the well yield range data 

for these points from the Bhujal Bhuvan Portal. Both the well yield and GPZ classes 

need to be categorized into five levels, ranging from very good to very poor. Based

http://mpwrd.gov.in/
https://earthexplorer.usgs.gov/
https://www.gsi.gov.in/
https://bhuvan.nrsc.gov.in/
https://www.imdpune.gov.in/
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Table 6.1 Well yield ranges 

with category (NRSA 2011)
Classes Bore wells yield Open wells yield Category 

1 < 50 LPM < 25 m3/day Very poor 

2 50–100 LPM 25–50 m3/day Poor 

3 100–200 LPM 50–100 m3/day Moderate 

4 200–400 LPM 100–200 m3/day Good 

5 > 400 LPM > 200 m3/day Very good 

on the Ground Water Prospect map developed by NRSA (2011), the groundwater 

categories are classified and presented in Table 6.1. 

The accuracy of Groundwater Potential Zones (GPZs) was verified by comparing 

them with actual well yield data. A table was constructed to list point number, 

geographic coordinates, GPZ classification, well yield, and agreement status. The 

overall accuracy was determined by analyzing the agreement between well yield 

classes and GPZ classes, considering categories such as “agree condition (agree, 

agree-less, and agree-excess)” and “disagree” statement between well yield class 

and GPZ classes (Patle et al. 2024a, b). 

Accuracy(%) = No. of points in agree condition/total no. of points × 100 

According to Hosmer and Lemeshow (2000), the validation accuracy can be classi-

fied into the following categories: 0.5–0.6 (poor); 0.6–0.7 (average); 0.7–0.8 (good); 

0.8–0.9 (very good); and 0.9–1.0 (excellent). 

According to Patle et al. (2024a, b), a map was produced to show areas of ground-

water levels where a decline in water levels is more than 0.1 m/year in post-monsoon 

season which help to identifying critical area. Area with depletion more than 0.1 m/ 

year is considered as the critical areas. For identification of suitable sites for the devel-

opment of Artificial Groundwater Recharge Structures, a Decision Support System 

(DSS) was prepared based on the different guidelines of IMSD (1995), CGWB 

(2007), NRSA (2011), and SAKSHAM (2017) which is given in Table 6.2. 

The selection of suitable pinpointing sites for artificial groundwater recharge 

structures was guided by four main factors: slope, stream order, soil permeability,

Table 6.2 Criteria for site selection of groundwater recharge structures (Patle et al. 2024a, b) 

S. N. Groundwater 

recharge structures 

Slope Stream order Soil permeability Lineament 

1 Check dam 3–5% 1–2c Lowd – 

2 Percolation tank Less than 2% * – Highb Fracturesc 

3 Nala bund Less than 1% * 3–4b Higha – 

4 Staggered contour 

trenches 

8–25% – Lowd – 

aIMSD (1995), bCGWB (2007), cNRSA (2011), dSAKSHAM (2017) 
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and lineament. Groundwater recharge structures are versatile and can be implemented 

in diverse geological settings, including hard rock and alluvial terrains. Check dams, 

nala bunds, and percolation tanks should typically be built in areas where the stream or 

nala drains between 40 to 100 hectares of land. The distance between two check dam 

or percolation tank sites should be approximately 250 m. The distance between two 

nala bund sites should be approximately 1 km. The distance between two staggered 

contour trench sites should be approximately 500 m. The proposed sites for artificial 

groundwater recharge structures were selected based on specific criteria. Critical 

areas were identified for constructing check dams, nala bunds, percolation tanks, 

and staggered contour trenches. The suitability of these sites was confirmed using 

Google Earth Pro software and by inclusion of 100 random samples for each type of 

structure. 

6.3 Results and Discussions 

6.3.1 Groundwater Potential Mapping 

In Narmada Basin, based on the analysis of different thematic maps; a total of 25 

major geological groups were identified in geology map. The total geographical area 

of the Narmada Basin is 85,083 km2. It has been found that the geology of the 

Narmada River Basin consists of Malwa group with 56.29% followed by the Allu-

vium (14.20%) and Gneissic Complex with supracrystal (4.83%) respectively. The 

Pediment Pediplain Complex is the most extensive geomorphological unit, covering 

42.36% of the total area, followed by the Dissected Plateau (30.82%) and alluvial 

plain (15.19%). Lineament Density was ranging from 0 to 1.41 km/sq. km over the 

study area. The majority of the area has a low lineament density of 0–0.30 km/sq. 

km. The Drainage Density obtained from 0.22 to 4.78 km/sq. km over the study area. 

About 68.38% area falling with the drainage density of 2.5–3.5 km/sq. km followed 

by 3.5–4.5 km/sq. km (16.60%) and 2.5–3.5 km/sq. km (11.60%). The dominant land 

use/land cover class is agricultural lands covering 48.96% of the total area, followed 

by Forest (46.47%) and waste lands (1.74%). Land use and land cover classes were 

assigned according to the 2019 NRSC classification standards (Dubey et al. 2020; 

Rao et al. 2020). Four different soil textural classes were identified namely: loamy, 

clay, loamy skeletal and clayey skeletal. The majority of the area has clayey soil 

(48.90%) followed by the loamy soil (42.98%) and loamy skeletal soil (7.63%). The 

slope percent ranged from 0 to 404% over the study area and the largest slope cate-

gory is 0–1% (nearly level) followed by 3–5% (moderate slope) covering 31.22% and 

22.10% of the entire area, respectively. Slope of the Narmada River Basin pointing 

from east to west direction. Furthermore, the slope percent from 0 to 8% were made 

into a group of the entire area which is suitable for groundwater potentiality. Another 

slope ranges more than 8% were grouped which shows less possibility of ground-

water. The study area typically receives normal monsoon rainfall between 675 and
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Fig. 6.2 The geology map of Narmada River basin

1422 mm. The majority of the area receives normal monsoon rainfall between 1000– 

1200 mm followed by the range 675–800 mm which contributes the 57.84% and 

21.14% of the study area. The spatial maps on eights thematic layers were given in 

Figs. 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9. 

The Analytical Hierarchical Process (AHP) method, developed by Saaty in 2008, 

is a popular Multiple Criteria Decision Making (MCDM) technique used globally to 

identify potential groundwater zones on maps. In this study, we created a pairwise 

comparison matrix to assess the relative importance of various factors. We assigned 

numerical ratings from 1 to 5, and their reciprocals from 1/2 to 1/5, to represent 

the relative weight of each factor compared to others (Table 6.3). Then prepared the 

normalized pairwise comparison (Table 6.4) and developed the weighted sum matrix 

(Table 6.5). The AHP model was executed and yielded a consistency ratio (CR) of 

approximately 0.07. This CR value is below the 0.1 threshold, indicating that the 

model’s judgments are reasonably consistent. 

λ max = 8.718. 

Consistency Index = CI = λ max −n/n−1 

0.102 

CR = CI/RI 

0.07
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Fig. 6.3 The geomorphology map of Narmada River basin 

Fig. 6.4 The lineament density map of Narmada River basin
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Fig. 6.5 The land use land cover map of Narmada River basin 

Fig. 6.6 The soil texture map of Narmada River basin
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Fig. 6.7 The slope map of Narmada River basin 

Fig. 6.8 The drainage density map of Narmada River basin
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Fig. 6.9 The rainfall map of Narmada River basin

It is less than 0.1. 

Finally, Weightage is given the Table 6.6.

The weights for each thematic layer were determined (see Table 6.6). Thematic 

factors were ranked from 5 (most influential) to 1 (least influential) based on their 

impact on the classes or categories. The rankings of different thematic parameters and 

their sub classes were assigned. Following this, a weighted sum approach was utilized 

to merge the layers. The integrated layer that resulted from this process exhibited a 

range of values between 125 and 416 which was classified into five classes viz. < 175, 

175–225, 225–275, 275–325 and > 325 index value of groundwater potential map. 

Lower index values indicate areas with low groundwater potential, while higher 

values signify areas with high potential. The study area was categorized into five 

groundwater potential zones: very good, good, moderate, poor, and very poor, based 

on the range of index values. Figure 6.10 illustrates the groundwater potential map 

generated using the AHP method.

The area classified as having a very poor potential was 0.38% (327.52 km2) 

of the total area, while the poor potential area was 10.21% (8686.20 km2). The 

moderate potential area was the largest at 50.78% (43,204.94 km2), followed by 

the good potential area at 26.19% (22,282.21 km2). The very good potential area 

was 12.44% (10,582.12 km2) of the total area. The central part of the Narmada 

Basin indicates good to very good groundwater potential zones. One of the reasons 

may be the widespread existence of the Alluvium and Malwa geologic group, Pedi-

ment Pediplain Complex geomorphologic unit, nearly level to moderate slope, and
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Table 6.6 Criteria weight 

estimated for different themes
S. No. Thematic factor Criteria weight Weight (%) 

1 Geology 0.221 22 

2 Geomorphology 0.202 20 

3 Lineament density 0.145 15 

4 Land use/land cover 0.120 12 

5 Soil texture 0.074 7 

6 Monsoon rainfall 0.065 7 

7 Slope 0.091 9 

8 Drainage density 0.083 8 

Sum 1.000 100

Fig. 6.10 The groundwater potential zones map of Narmada River basin

agricultural lands. Other factors like soil texture, slope, drainage density, and rainfall 

impacted low influence due to less weightage assigned. The majority of the Narmada 

basin is capable of yielding moderate to good amounts of groundwater due to varying 

geologic condition and other groundwater influencing factors.
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6.3.2 Validation of Groundwater Potential Map 

As reported by Patle et al. (2024a, b), the validation of resulted data is one of the most 

important works after making any model to check the proficiency of the predicted 

results. Various methods are extensively used to validate groundwater potential zones 

maps such as receiver operating characteristics (ROC) approach, groundwater well 

yield data, net availability of groundwater and groundwater level fluctuation data etc. 

(Basavarajappa et al. 2016; Arulbalaji et al. 2019; Elubid et al. 2020; Patle et al. 2022, 

2024a, b). To verify the accuracy of the delineated groundwater potential zones, well 

yield data was cross-referenced with Table 6.7.

According to the above shown graph, 34% of points were classified under the 

agreement condition. About 41% and 6% of random points were found under the 

agreement with excess and less yield respectively. In the disagreement category, about 

19% of points were found. Figure 6.11 demonstrated that the well yield points with 

the agreement (including agree, excess agree, and less agree) are mostly detected 

in entire zones of the groundwater potential zones. The overall accuracy of delin-

eated groundwater potential zones within the Narmada Basin was found 81% which 

symbolizes very good accuracy.

6.3.3 Identification of Critical Area 

Following the successful mapping of groundwater potential zones in the Narmada 

Basin, the next step was to identify the most critical areas for artificial groundwater 

replenishment. To this end, a groundwater level trend map was developed for the 

post-monsoon period between 2011 and 2020, as illustrated in Fig. 6.12.

Areas experiencing significant subsidence, exceeding 0.10 m per year, were iden-

tified as critical zones. About 48,335 km2 area out of the 85,035 km2 area is identified 

as a critical area in Narmada River Basin for Artificial Groundwater Recharge shown 

in Fig. 6.13.

6.3.4 Identification of Suitable Site for Artificial Recharge 

in Critical Areas 

To increase groundwater levels, we needed to identify suitable locations for various 

artificial recharge structures like check dams, percolation tanks, nala bunds, and 

staggered contour trenches. We used several guidelines (IMSD 1995, CGWB  2007, 

NRSA 2011, and SAKSHAM 2017) to develop criteria for site selection. These 

criteria were based on factors like slope, drainage orders, soil permeability, and linea-

ments. This study identified potential locations for different groundwater recharge 

structures, including check dams, percolation tanks, nala bunds, and staggered
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Table 6.7 Comparison analysis of GPZ and well yield data of Narmada Basin 

Point Longitude Latitude GPZ Yield Agreements 

1 80.0683 23.7640 Moderate Very poor Disagree 

2 80.0669 23.7509 Poor Very poor Agree—excess 

3 80.0294 23.7189 Good Very poor Disagree 

4 79.9971 23.6277 Very poor Very poor Agree 

5 80.1706 23.6704 Very good Moderate Disagree 

6 79.9254 23.4650 Very poor Very poor Agree 

7 78.2703 23.3383 Moderate Poor Agree—excess 

8 80.1796 23.3728 Good Moderate Agree—excess 

9 78.3961 23.3005 Moderate Moderate Agree 

10 79.9045 23.2905 Very good Moderate Disagree 

11 77.7631 23.1255 Good Moderate Agree 

12 78.1421 23.1754 Moderate Moderate Agree 

13 80.3636 23.2110 Good Poor Disagree 

14 80.9363 23.2266 Moderate Poor Agree—excess 

15 78.7678 23.1161 Very good Good Agree—excess 

16 79.6732 23.1095 Good Good Agree 

17 79.8352 23.1115 Poor Poor Agree 

18 80.0822 23.1336 Moderate Moderate Agree 

19 77.7251 22.9542 Moderate Very poor Disagree 

20 78.5999 23.0246 Very good Very good Agree 

21 79.3730 23.0175 Good Moderate Agree—excess 

22 80.3644 23.0202 Moderate Very poor Disagree 

23 77.0551 22.8855 Moderate Poor Agree—excess 

24 78.1255 22.9218 Very good Very good Agree 

25 79.0731 22.8539 Very good Very good Agree 

26 79.1051 22.8729 Good Very good Agree—less 

27 79.8761 22.8646 Moderate Poor Agree—excess 

28 80.9969 22.9390 Moderate Poor Agree—excess 

29 77.3531 22.7810 Good Moderate Agree—excess 

30 77.4354 22.7390 Moderate Good Agree—less 

31 78.3114 22.8381 Very good Very good Agree 

32 80.1880 22.8208 Moderate Poor Agree—excess 

33 81.2878 22.8150 Moderate Poor Agree—excess 

34 81.4721 22.8320 Good Poor Disagree 

35 81.5809 22.8502 Poor Very poor Agree—excess 

36 76.9222 22.6824 Moderate Poor Agree—excess 

37 77.2248 22.6923 Very good Very good Agree

(continued)
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Table 6.7 (continued)

Point Longitude Latitude GPZ Yield Agreements

38 78.2307 22.7083 Very good Very good Agree 

39 79.0834 22.7298 Good Moderate Agree 

40 79.6236 22.7095 Moderate Moderate Agree 

41 80.8946 22.7687 Moderate Poor Agree—excess 

42 74.7032 22.5212 Moderate Very poor Disagree 

43 74.6996 22.4884 Very poor Very poor Agree 

44 74.9743 22.4764 Good Very poor Disagree 

45 76.7055 22.5874 Moderate Poor Agree—excess 

46 77.7770 22.5698 Very good Very good Agree 

47 78.3957 22.6208 Good Very poor Disagree 

48 78.8083 22.6512 Poor Very poor Agree—excess 

49 79.3145 22.6508 Moderate Poor Agree—excess 

50 80.8844 22.6183 Good Very poor Disagree 

51 80.9083 22.6316 Moderate Very poor Disagree 

52 75.0631 22.4435 Moderate Moderate Agree 

53 76.2021 22.4595 Very poor Very poor Agree 

54 76.4869 22.4958 Poor Very poor Agree—excess 

55 76.4484 22.4467 Very poor Very poor Agree 

56 76.8885 22.4827 Moderate Poor Agree—excess 

57 77.5603 22.5363 Good Very good Agree—less 

58 77.8916 22.4677 Very good Good Agree—excess 

59 79.3094 22.5691 Moderate Poor Agree—excess 

60 79.4947 22.5373 Good Very poor Disagree 

61 81.3150 22.5324 Moderate Poor Agree—excess 

62 75.2680 22.3525 Moderate Poor Agree—excess 

63 75.9016 22.3381 Good Moderate Agree—excess 

64 76.1590 22.3713 Poor Very poor Agree—excess 

65 76.2777 22.3912 Very poor Very poor Agree 

66 76.9165 22.3502 Moderate Poor Agree—excess 

67 78.4853 22.3951 Good Very poor Disagree 

68 80.4656 22.4436 Moderate Poor Agree—excess 

69 74.5238 22.2367 Very poor Very poor Agree 

70 74.7810 22.2651 Moderate Poor Agree—excess 

71 75.0602 22.2121 Poor Very poor Agree—excess 

72 75.9592 22.2907 Moderate Moderate Agree 

73 76.0487 22.2890 Very poor Very poor Agree 

74 76.3811 22.2450 Good Moderate Agree—excess

(continued)
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Table 6.7 (continued)

Point Longitude Latitude GPZ Yield Agreements

75 76.5979 22.3042 Very poor Poor Agree—less 

76 77.0848 22.3019 Very good Good Agree—excess 

77 78.3368 22.3022 Moderate Very poor Disagree 

78 78.4500 22.3452 Good Good Agree 

79 74.2269 22.1113 Moderate Good Agree—less 

80 75.2925 22.1470 Moderate Moderate Agree 

81 75.4625 22.1585 Poor Good Disagree 

82 76.2571 22.2060 Very poor Very poor Agree 

83 76.3376 22.1986 Moderate Moderate Agree 

84 76.9904 22.2303 Good Very good Agree—excess 

85 78.3444 22.2343 Moderate Very poor Disagree 

86 74.4039 22.0329 Moderate Good Agree—less 

87 74.9219 22.0833 Good Good Agree 

88 75.7085 22.0859 Moderate Moderate Agree 

89 77.2799 22.1619 Moderate Very poor Disagree 

90 77.7555 22.1399 Poor Very poor Agree—excess 

91 78.0788 22.1783 Good Good Agree 

92 80.5684 22.1295 Moderate Poor Agree—excess 

93 75.2133 21.9499 Moderate Poor Agree—excess 

94 76.3517 21.9796 Moderate Poor Agree—excess 

95 76.6754 22.0437 Good Good Agree 

96 77.7968 22.0831 Moderate Poor Agree—excess 

97 80.7233 22.0878 Poor Very poor Agree—excess 

98 74.7994 21.8757 Moderate Moderate Agree 

99 75.9490 21.9482 Moderate Poor Agree—excess 

100 76.0497 21.9382 Good Poor Disagree 

101 77.1736 21.9728 Moderate Poor Agree—excess 

102 75.4355 21.7998 Moderate Poor Agree—excess 

103 76.2769 21.8376 Good Moderate Agree—excess 

104 76.5846 21.8433 Moderate Moderate Agree 

105 75.2189 21.6567 Moderate Poor Agree—excess 

106 76.4380 21.6976 Moderate Moderate Agree 

107 76.8078 21.7907 Good Good Agree 

108 75.7251 21.6406 Moderate Very poor Disagree 

109 75.6540 21.5512 Moderate Poor Agree—excess
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Fig. 6.11 Comparison of GPZ with well yield points of Narmada Basin

Fig. 6.12 The post-monsoon groundwater level trend map of Narmada River basin
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Fig. 6.13 The critical area map of Narmada River basin

contour trenches. The selection of these sites was based on the criteria outlined 

in Table 6.2. Using a GIS-based model in ArcGIS 10.8, we analyzed the area and 

identified potential sites for each type of recharge structure. The results of this anal-

ysis are shown in Figs. 6.14, 6.15, 6.16 and 6.17. After the identification of suitable 

sites, verification of the identified sites was conducted by visual interpretation with 

100 random samples imported on Google Earth Pro imagery. It was found the good 

validation accuracy for the different artificial groundwater recharge structures.
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Fig. 6.14 The suitable sites for check dams in critical areas of Narmada River basin 

Fig. 6.15 The suitable sites for percolation tanks in critical areas of Narmada River basin
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Fig. 6.16 The suitable sites for nala bunds in critical areas of Narmada River basin 

Fig. 6.17 The suitable sites for staggered contour trenches in critical areas of Narmada River basin
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6.4 Conclusion 

This research was conducted in Madhya Pradesh’s Narmada River Basin, India’s 

largest. Groundwater potential mapping was performed using various thematic influ-

encing parameters, including geology, geomorphology, lineament density, land use/ 

land cover, soil texture, rainfall, slope, and drainage density. The majority of data 

pertaining to these factors can be easily accessed on open platforms maintained 

by government sectors. The multi criterion decision making approach AHP was 

employed for the potential zoning of groundwater. The area in this basin classified 

as having a very poor potential was 0.38% of the total area, while the poor potential 

area was 10.21%. The moderate potential area was the largest at 50.78%, followed 

by the good potential area at 26.19%. The very good potential area was 12.44% of 

the whole area. The central part of the Narmada Basin indicates good to very good 

groundwater potential zones. 

The main aim was to recognize the critical area in Narmada River Basin. The 

decadal post-monsoon season groundwater level trend map (where depletion is > 

0.10 m/yr) was considered as critical area. About 56% area found critical for artifi-

cial groundwater recharge structures. By combining remote sensing and GIS tech-

niques with a strong multi-criterion decision-making process, we were able to accu-

rately locate optimal sites for various artificial groundwater recharge structures. This 

included percolation tanks (8431), staggered contour trenches (20,639), nala bunds 

(3582), and check dams (54,803). Reviewed key guidelines for choosing suitable 

locations for groundwater recharge structures. This study identified and proposed 

a specific number of suitable spots for various groundwater recharge structures, 

pinpointing their exact places on a map. The sites were confirmed to be accurate 

through verification with Google Earth Pro software. It is recognized that the geoin-

formatics presents a comprehensive and agile solution for mapping groundwater and 

managing natural resources, optimizing both time and budget. 
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Chapter 7 

Remote Sensing of Freshwater Algal 

Blooms: A Spectral Index Approach 

Krishna Patil, Kajal Rathod, Ashwin Gujrati, and Ravindra Pawar 

Abstract Climate change and anthropogenic activities have intensified freshwater 
algal blooms, creating substantial risks to aquatic ecosystems and human health. 
Although traditional in-situ monitoring methods deliver accurate measurements, 
their spatial and temporal limitations have driven a shift towards remote sensing 
as a viable alternative with extensive monitoring potential. This chapter reviews 
recent advancements in spectral indices for detecting and monitoring freshwater algal 
blooms, tracing their evolution from primary vegetation indices to specialised algo-
rithms. Key indices, including the Normalized Difference Chlorophyll Index (NDCI), 
Floating Algae Index (FAI), and Algal Bloom Detection Index (ABDI), along with 
new approaches for macroalgal detection, are analysed for their strengths and limi-
tations across different remote sensing platforms. While these indices enhance the 
capability to track algal blooms across diverse spatial and temporal scales, chal-
lenges remain regarding universal applicability and species-level discrimination. 
The chapter identifies research gaps and proposes future directions, emphasising 
the need for integrated monitoring frameworks and standardised methods across 
satellite platforms to improve algal bloom detection and risk management. 
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7.1 Introduction 

Freshwater resources, including lakes, rivers, and wetlands, play an essential role 
in the environment by providing critical resources for human use and supporting 
a rich diversity of habitats and ecosystem services (Vári et al. 2022). Despite their 
relatively small coverage on Earth’s surface, freshwater resources are indispensable 
for sustaining biodiversity and enabling various species to thrive (Musie and Gonfa 
2023). These ecosystems contribute significantly to global carbon and nutrient cycles, 
regulating processes that maintain ecological balance and climate stability. Anthro-
pogenic activities and climate change have intensified the impact on freshwater 
resources, pushing them to the brink of environmental crisis (Bănăduc et al. 2022; 
IPCC 2022). These ecosystems are now emerging as critical but limited resources, 
both in terms of water quality and availability, for human development and long-term 
ecological stability. Among the most significant challenges are nutrient enrichment 
from agricultural runoff, industrial pollution, climate change-induced alterations, 
acidification, and the spread of invasive species (Palmer et al. 2015; Singh et al. 
2025). 

The increasing frequency and intensity of algal blooms are among the most severe 
consequences of these cumulative environmental stresses. These harmful blooms are 
driven mainly by eutrophication—an excess of nutrients in water bodies—coupled 
with rising atmospheric CO2 concentrations and global warming (Griffith and Gobler 
2020; Igwaran et al. 2024). Evidence shows that algal blooms have significantly 
increased globally in recent decades, with projections indicating that this trend will 
continue (Ho et al. 2019; Singh et al. 2024). These blooms severely- threaten ecosys-
tems ecological structure, functioning, and aesthetics, leading to a cascade of prob-
lems, including biodiversity loss, degradation of water quality, and disruptions to 
ecosystem services (Griffith and Gobler 2020; Amorim and do Nascimento Moura 
2021; Roegner et al. 2023). Addressing these challenges is critical to safeguarding 
the ecological integrity of freshwater resources and the humans and wildlife that 
depend on them. 

7.2 Freshwater Algal Blooms 

Algae are diverse, primarily aquatic organisms that are essential to freshwater ecosys-
tems. These organisms range widely in size and complexity, including microalgae 
(small, often single-celled organisms like filamentous cyanobacteria) and macroalgae 
(larger, multicellular forms like seaweed) (Bellinger and Sigee 2015). Algae are 
fundamental to these ecosystems, mainly because they contribute to primary produc-
tion by generating organic matter, which serves as the base of the food web and 
supports higher trophic levels (Paerl and Otten 2013; Guo et al. 2016). Algal classifi-
cation extends beyond size and structure and includes groupings based on their unique 
photosynthetic pigments. These pigments allow algae to capture sunlight for energy;
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each group’s pigments contribute to specific light absorption properties. Major 
pigment groups include chlorophyll-a (Chl-a), present in Phaeophyta, Rhodophyta, 
and Chlorophyta, as well as accessory pigments in shades of blue, yellow, and grey 
that enable algae to absorb different light wavelengths, thereby enhancing their photo-
synthetic efficiency and giving them distinct colouration (Sheath and Wehr 2015; 
Sahu et al. 2024). 

Algae are exceptionally responsive to changes in nutrient availability, a critical 
factor in their growth and productivity (Burford et al. 2023). Freshwater ecosystems 
are sensitive to nutrient inputs, such as nitrogen and phosphorus from agricultural 
runoff, fertilisers, or other pollutants (Akinnawo 2023). When nutrient concentra-
tions increase beyond natural levels, algal productivity is amplified, often leading 
to excessive growth—a phenomenon termed eutrophication. This nutrient-driven 
surge can result in high concentrations of algae in the water, leading to algal blooms 
(Sanseverino et al. 2016). Algal blooms are also defined as rapid increases in algal 
populations beyond typical background levels, often resulting in dense accumula-
tions of cells in the water. These blooms occur primarily in surface waters exposed to 
sunlight, where algae can capture energy efficiently and proliferate through rapid cell 
division. The term “bloom” conveys the abundant growth and flourishing of algae, 
similar to how plants proliferate on land under favourable conditions (Huisman et al. 
2018). While algal blooms are somewhat natural and contribute to oxygen production 
and organic matter for food webs, excessive blooms can disrupt aquatic ecosystems. 
Certain bloom-forming algae, particularly within the phytoplankton group, release 
toxins or create oxygen-depleted zones as they decompose, posing risks to aquatic 
life and human health (Paerl and Otten 2013). 

Microscopic algae, or phytoplankton, represent the drifting, single-celled forms 
that are especially critical to freshwater ecosystems. These non-motile algae rely on 
water movements for distribution and play an essential role in producing oxygen 
and organic matter. Algal blooms, however, can have both beneficial and detri-
mental impacts. While blooms provide oxygen and are foundational to aquatic food 
webs, certain species within these blooms can release toxins or otherwise disrupt 
ecosystem balance (Hallegraeff 2003; Huisman et al. 2018; Sanseverino et al. 2016). 
Though few, harmful algal species are widely distributed across various phyto-
plankton groups. Some harmful species are eukaryotes—organisms with a nucleus 
and organelles, such as dinoflagellates, diatoms, and chlorophytes—while others are 
prokaryotes, such as cyanobacteria, which lack membrane-bound organelles (Watson 
et al. 2015; Brooks et al. 2016). 

Thus, while algae are essential to life on Earth—producing roughly half of the 
oxygen we breathe and supporting aquatic food chains—uncontrolled growth through 
nutrient overloading poses ecological and health risks, marking the complex and 
significant role of algae in freshwater ecosystems. Consequently, continuous moni-
toring of algal populations is essential to detect and manage blooms effectively, 
ensuring the stability and health of freshwater resources.
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7.3 Remote Sensing of Freshwater Algal Blooms 

Monitoring freshwater algal blooms is essential to protect aquatic life, ensure water 
quality, and safeguard public health. Traditional in-situ approaches primarily relied 
on field sampling and laboratory analyses. It mainly measures toxic cell concen-
trations in water and additional parameters such as water temperature, turbidity, 
phosphates, nitrates, pH, and dissolved oxygen. While effective at localised scales, 
it presents challenges for widespread monitoring, being labour-intensive, time-
consuming, and costly. It also requires regular sample collection, which is imprac-
tical at regional or national scales. Freshwater algal blooms exhibit high spatiotem-
poral variability, complicating comprehensive long-term monitoring efforts through 
traditional approaches alone (Shi et al. 2019). In recent years, various methods for 
real-time detection, spatiotemporal monitoring and prediction of algal blooms are 
available. Remote sensing significantly improves algal bloom monitoring in fresh-
waters by providing large-scale, simultaneous data collection with frequent temporal 
updates (Rolim et al. 2023). 

Remote sensing collects information about Earth’s surface without direct contact, 
primarily through satellite or aerial sensors. It involves detecting and measuring 
reflected or emitted energy from the Earth in various wavelengths of the electro-
magnetic spectrum. Remote sensing technology has been widely used to analyse 
water quality (Huang et al. 2018; Chen et al. 2022). Key biogeochemical parame-
ters investigated include temperature, colour, suspended matter, dissolved carbon, 
nutrients, trophic status and aquatic vegetation (Gholizadeh et al. 2016a). Various 
remote sensing platforms are utilised for data collection, including groundborne, 
spaceborne, and airborne systems. 

Groundborne platforms include sensors on the Earth’s surface, such as fixed 
stations or mobile units that capture data directly from the environment. These are 
typically used for real-time, high-resolution, localised studies and can provide vali-
dation for satellite data. In China, a ground-based remote sensing system (GRSS) 
has been used to capture rapid changes in phytoplankton bloom (Wang et al. 
2022). Airborne platforms include balloons, aircraft, and Unmanned Aerial Vehicles 
(UAVs). These can cover large areas at higher resolutions than satellites, making them 
useful for detailed studies. UAVs, also known as drones, are increasingly popular 
for remote sensing due to their flexibility, cost-effectiveness, and ability to access 
remote areas. It can be equipped with various sensors, including multispectral and 
hyperspectral cameras, to gather detailed spatial information. Wu et al. (2023), used 
multispectral UAV-derived vegetation indices and chlorophyll-a concentrations to 
monitor algal blooms in Southern Illinois. Satellites orbiting the Earth are space-
borne platforms with sensors that collect data over large areas. These platforms 
provide comprehensive and consistent observations of the Earth’s surface, enabling 
global monitoring of environmental changes, land use, and water quality (Tripathi 
and Tiwari 2021; Gholizadeh et al. 2016b). Satellite remote sensing greatly enhances 
algal bloom monitoring in freshwaters by enabling simultaneous, large-scale data
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acquisition with frequent temporal updates (Caballero et al. 2020; Nazeer et al. 
2023). 

Satellite remote sensing data is mainly optical, radar, and LiDAR, each offering 
distinct capabilities for monitoring freshwater algal bloom. Optical sensors, capturing 
data in visible and infrared wavelengths, are widely applied in monitoring vege-
tation health and water quality. Optical data includes multispectral sensors (e.g., 
Sentinel-2 MSI, Landsat 8 OLI) for broad spectral bands and hyperspectral sensors 
(e.g., AVIRIS) for detailed analysis across numerous narrow bands. It has been 
widely utilised in freshwater algal bloom studies. Radar technology in the microwave 
spectrum facilitates cloud-penetrating, all-weather data collection, enabling detailed 
assessments. The effectiveness of radar remote sensing techniques in monitoring 
and controlling algal blooms is still under study. LiDAR, through laser pulse emis-
sions, provides high-resolution, three-dimensional elevation data, supporting preci-
sion. Attempts have been made in recent years to conduct LiDAR studies on fresh-
water algal blooms (Rolim et al. 2023). These remote sensing modalities collec-
tively enhance our ability to conduct large-scale, temporally consistent environmental 
monitoring and contribute critical insights for sustainable resource management. 

Algal bloom monitoring is based on optical properties, categorised into inherent 
optical properties (IOPs) and apparent optical properties (AOPs). IOPs, such as 
absorption and scattering coefficients, depend solely on the composition and concen-
tration of the medium, independent of the ambient light. In contrast, AOPs, including 
remote sensing reflectance, rely on the medium’s characteristics and the light field 
(Shen et al. 2012). Blooms affect IOPs through their biological properties, altering 
AOPs (remote sensing reflectance) to allow the extraction of biological informa-
tion. Current remote sensing of algal blooms employs various algorithms based on 
these optical characteristics of primarily absorption and fluorescence of pigments 
(Shi et al. 2019). Over the past several decades, satellite remote sensing of fresh-
water algal blooms has advanced significantly. Furthermore, developing algorithms 
for remotely estimating algal biomass facilitates the satellite-based quantification of 
algal bloom phenology. 

7.4 Spectral Indices for Freshwater Algal Blooms 

Monitoring 

Spectral indices are widely used mathematical combinations of various spectral bands 
(Montero et al. 2023). Various spectral indices have been developed based on normal-
ized band ratio and spectral shape measuring peaks at specific wavelengths to detect 
and characterise algal blooms (Nazeer et al. 2023; Rolim et al. 2023). By analysing the 
spectral signatures of water bodies, these indices provide insights into the biochem-
ical and biophysical properties associated with algal biomass. Chlorophyll-a and 
phycocyanin concentrations have been utilised as proxies for monitoring freshwater
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algal blooms (Liu et al. 2022; Beal et al. 2024). These pigments exhibit distinct spec-
tral characteristics, with noticeable peaks in remote sensing reflectance at nearly 
440 nm in the blue and nearly 675 nm in the red wavelengths (Shi et al. 2019). 
This chapter investigated various recent spectral indices for detecting, mapping, and 
monitoring algal blooms in freshwaters. 

7.4.1 Normalized Difference Vegetation Index (NDVI) 

and Enhanced Vegetation Index (EVI) 

The NDVI (Rouse et al.  1974) is based on comparing the amount of near-infrared 
light reflected by vegetation to the amount of visible light reflected. It is the most 
widely used spectral index in remote sensing to assess vegetation health and chloro-
phyll concentrations. The NDVI has also been utilised to detect freshwater algal 
blooms. The NDVI values range from − 1 to  + 1, where values close to zero indi-
cate non-vegetated surfaces (like water), while positive values indicate vegetation 
(Rodríguez-López et al. 2020). In algal bloom conditions, NDVI can show increased 
values due to the high chlorophyll content in algae, especially during peak bloom 
periods. It can be used for temporal analysis of algal blooms to track changes in bloom 
extent over time (Choi et al. 2023). Hu and He (2008) found that while NDVI effec-
tively detected floating algae, its values were sensitive to changing environmental 
conditions, such as aerosols and solar/viewing geometry, affecting measurements’ 
accuracy in nearby waters. In very dense algal blooms, NDVI may saturate and fail 
to effectively distinguish between high biomass areas (Colkesen et al. 2024). This 
can lead to underestimations of bloom extent. Atmospheric conditions, cloud cover, 
and turbid surface waters can significantly impact the detection of algal blooms using 
the NDVI (Cao et al. 2021). 

NDVI = (NIR − Red )/(NIR + Red ) 

Huete et al. (1999) developed the Enhanced Vegetation Index (EVI) to improve 
the NDVI. It is designed to optimise the vegetation signal while minimising the 
influence of atmospheric conditions and soil background. It is more sensitive to dense 
vegetation and has also been used in studies to detect chlorophyll-a in lakes. Hence, it 
has been effectively utilized to detect freshwater algal blooms. It is affected by varying 
environmental conditions, such as turbidity and sediment load in water bodies, as 
high turbidity can affect the chlorophyll signals, leading to underestimations of algal 
bloom presence (Cao et al. 2021; Colkesen et al.  2024). 

EVI = G × (NIR − Red )/(NIR + C1 × Red − C2 × Blue + L) 

where G = 2.5, C1 = 6and C2 = 7.5, and L = 1
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7.4.2 Normalized Difference Chlorophyll Index (NDCI) 

Based on the principles of the NDVI, the NDCI is calculated by taking the difference 
between reflectance values at 708 nm and 665 nm, normalised by their sum. This 
method minimises uncertainties in remote sensing reflectance estimates, accounts 
for seasonal solar azimuth variations, and reduces atmospheric influences (Mishra 
and Mishra 2012). NDCI effectively captured peak chlorophyll-a concentrations 
observed in water bodies with high accuracy. NDCI values can directly correlate 
with Chl-a concentrations based on various models derived from extensive datasets 
(Mishra et al. 2014; Beck et al. 2016; Karimi et al.  2024; Mpakairi et al. 2024). 
These models, validated against measured Chl-a, showed strong correlations across 
diverse water types (Neil et al. 2019). It effectively overcomes the sensitivity of 
NDVI to chlorophyll-a concentrations, particularly in turbid and productive waters, 
highlighting its ability to map algal bloom dynamics. It demonstrated reliable perfor-
mance across various platforms and environments, minimising measurement uncer-
tainty (Caballero et al. 2020). It has also been effectively utilized to assess spatiotem-
poral variability of algal blooms in small reservoirs (Kislik et al. 2022). The NDCI is 
simple and versatile, making it most suitable for multiple applications in monitoring 
and analysing algal blooms. 

NDCI = (Rededge1 − Red)/(Rededge1 + Red ) 

7.4.3 Floating Algae Index (FAI) and Adjusted Floating 

Algae Index (AFAI) 

Hu (2009) developed the FAI based on MODIS data, which calculates the differ-
ence between Near-Infrared (NIR) reflectance and a linear interpolation of red and 
Shortwave Infrared (SWIR) reflectance values. Positive FAI values generally signal 
the presence of floating vegetation (Dogliotti et al. 2018). The FAI has been widely 
applied to monitor macro- and micro-algal blooms in various regions (Oyama et al. 
2015). Algal bloom mapping is limited by detection thresholds, such as FAI > − 

0.004, initially developed for MODIS but potentially less adaptable to other sensors, 
leading to possible inaccuracies in detection across platforms. FAI also struggles 
to distinguish cyanobacteria from aquatic macrophytes, requiring post-classification 
adjustments (Li et al. 2022). 

FAI = NIR − [Red + (SWIR − Red ) × (λNIR − λRed )/(λSWIR − λRed )] 

Fang et al. (2018) developed an adjusted floating algae index (AFAI). It enhances 
the near-infrared (NIR) peak, distinguishing harmful algal blooms (HABs) from 
clear water easier. AFAI normalises across different sensors by disregarding the
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central wavelength, allowing efficient algal bloom extraction and integrating multiple 
satellite images. Additionally, its flexible threshold enables more accurate detection. 
It has limitations due to vegetation interference, making distinguishing algal blooms 
difficult. 

AFAI = NIR − Red + (SWIR − Red ) × 0.5 

7.4.4 Algal Bloom Detection Index (ABDI) 

The ABDI is one of the most recent indices applied for freshwater algal bloom 
mapping. Cao et al. (2021) employed the Algal Bloom Detection Index (ABDI) 
using Sentinel-2 MSI imagery to identify algal blooms in China. After applying an 
appropriate threshold, the resulting algal bloom maps demonstrated high consistency 
with visual interpretation maps. It was less sensitive to thin cloud cover and turbid 
waters than other spectral indices. It proves high accuracy (over 96%) in identi-
fying algal blooms, but its detection threshold variability can lead to inconsistencies, 
particularly in complex ecosystems with both algal blooms and aquatic vegetation. 
This limitation underscores the need for adaptive approaches to enhance detection 
accuracy. 

ABDI =

[

Rededge2 − Red − (NIR − Red ) × 
λRededge2 − λRed 

λNIR − λRed

]

− [Red − 0.5 × Green] 

7.4.5 Spectral Indices Based Algal Blooms Detection in Ukai 

Reservoir 

The Ukai Reservoir, situated on the Tapi River, is the second-largest reser-
voir in Gujarat, India. It covers an area of 494.01 km2. The catchment 
area of the Ukai Reservoir spans around 62,225 km. A sentinel-2 image 
(ID: COPERNICUS/S2_HARMONIZED/20220221T053839_20220221T054432_ 
T43QCD), from February 21, 2022, was used to extract algal blooms using NDVI, 
EVI, FAI, AFAI, NDCI, and ABDI indices in google earth engine platform. Spectral 
features highlighted the presence of algal blooms in the Ukai reservoir. Algal blooms 
showed reflectance peaks in the green, red-edge, and near-infrared (NIR) bands, with 
a pronounced peak between Red Edge 1 and Red Edge 3, likely attributed to chloro-
phyll and other pigments. In contrast, water demonstrated low reflectance across all 
bands due to its high absorption characteristics, particularly in the NIR and shortwave
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infrared (SWIR) regions (Fig. 7.1). Algal blooms exhibited higher values, especially 
for NDVI and EVI, indicating strong vegetation-like spectral properties, while water 
indicated negative values for all indices (Fig. 7.2). This highlighted the effective 
identification of algal blooms using spectral indices as evidenced in Fig. 7.3. 
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Fig. 7.1 Spectral signatures of algal bloom and water across Sentinel-2 bands 

Fig. 7.2 Box-plot distribution of spectral indices values for algal bloom and water
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Fig. 7.3 Algal blooms detection in Ukai Reservoir using various spectral indices, highlighting the 
spatial distribution of algal blooms 

7.4.6 Other Indices 

Recent advances have led to the development of various new algorithms and spectral 
indices tailored for algal bloom monitoring. In addition to spectral indices, multiple 
studies have attempted to develop different band ratios specifically for monitoring 
algal blooms in freshwater systems (Beck et al. 2016; King et al. 2022; Kislik et al. 
2022). Most studies have focused on using chlorophyll-a as a proxy for detecting algal 
blooms. Some studies, however, have explored the phycocyanin proxy for enhanced 
detection, particularly for cyanobacterial blooms (Qi et al. 2014; Sòria-Perpinyà 
et al. 2020). Studies have also concentrated on spectral shape analysis to improve 
detection accuracy (Maniyar et al. 2022). Microalgal bloom monitoring has been 
widely explored, with numerous studies establishing effective methods and indices 
for detection. In contrast, freshwater macroalgal monitoring is emerging as an area 
of interest, with recent studies developing and refining new indices (as shown in 
Table 7.1) to improve detection accuracy and offer novel insights into macroalgal 
dynamics in freshwater systems.

These indices are primarily site-specific, developed and validated according to 
local environmental conditions, limiting their applicability to broader areas. Many 
of these were initially designed for coastal and ocean waters and are now increasingly 
being adapted for use in freshwater environments. However, challenges remain in 
ensuring their accuracy and reliability across different water types.
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Table 7.1 Spectral indices for freshwater macroalgal bloom monitoring 

Index Formula Satellite References 

Surface algal 
bloom index 
(SABI) 

(NIR − Red )/(Blue + Green) MODIS Alawadi 
(2010) 

Normalized 
difference 
aquatic 
vegetation 
index 
(NDAVI) 

(NIR − Blue)/(NIR + Blue) Landsat 
TM/ 
ETM+ 

Villa et al. 
(2014) 

Water 
adjusted 
vegetation 
index (WAVI) 

(1 + L) × 
NIR−Blue 

NIR+Blue+L
Landsat 
TM/ 
ETM+ 

Villa et al. 
(2014) 

Cyanobacteria 
and 
macrophytes 
index (CMI) 

Green − Blue − 

((SWIR − Blue) × (λGreen − λBlue)/(λSWIR − λRed ) 

Landsat 
OLI 

Chen et al. 
(2020) 

Macroalgae 
index (MAI) 

(Green + Red) − [SWIR1 + (Blue − SWIR1) 

× ((λSWIR1 − λGreen)/(λSWIR1 − λBlue)) 

MODIS Liang et al. 
(2017) 

Three-band 
macroalgae 
detection 
index (TMI) 

((Green − Red ) × NIR/Red ) × 50 Landsat 
OLI 

Nazeer 
et al. 
(2023)

7.5 Conclusion 

Remote sensing-based spectral indices have revolutionized the monitoring of fresh-
water algal blooms, offering solutions to the limitations of traditional monitoring 
methods. The evolution from basic vegetation indices like NDVI to specialized 
indices such as NDCI, FAI, and ABDI reflects significant progress in this field. 
These advancements have enhanced the ability to detect, quantify, and monitor algal 
blooms across diverse freshwater ecosystems with improved temporal and spatial 
resolution. Satellite remote sensing has emerged as a valuable tool for early detec-
tion and monitoring of algal blooms. The capability to provide synoptic coverage over 
large areas, combined with regular revisit times, enables tracking bloom dynamics 
and their spatiotemporal evolution. This has proven crucial for timely management 
interventions and public health protection. The development of specialized indices 
like ABDI has improved detection accuracy even under challenging conditions such 
as thin cloud cover and turbid waters, demonstrating the continuing advancement in 
this field. 

However, several key research gaps and challenges remain. The site-specific 
nature of many indices limits their universal applicability, suggesting the need for



158 K. Patil et al.

more robust, globally applicable approaches. Atmospheric correction and sensor cali-
bration present technical challenges, particularly in complex inland water bodies. The 
selection of accurate threshold limits also poses a challenge, as variability in envi-
ronmental conditions can complicate this process, potentially reducing classification 
accuracy. Additionally, the distinction between different types of aquatic vegetation 
and various algal species remains problematic, highlighting the need for more sophis-
ticated detection methods. The development of adaptive algorithms that can account 
for regional variations in water quality parameters and environmental conditions is 
essential. Integrating multiple spectral indices with machine learning approaches 
could enhance detection accuracy and reliability. Future research should also focus 
on improving the ability to distinguish between different algal species, particularly 
toxic varieties, and strengthening early warning capabilities by combining spectral 
indices with environmental parameters. Standardization of methods across different 
satellite platforms is crucial to ensure data continuity and compatibility. 

As climate change continues to influence the frequency and intensity of algal 
blooms, the continued development and refinement of spectral indices will be crucial. 
Integrating these remote sensing approaches with traditional monitoring methods 
could provide comprehensive monitoring systems that support effective ecosystem 
management and public health protection. Furthermore, the advancement of satellite 
technology and the launch of upcoming sensors with improved spectral, spatial, and 
temporal resolutions like 3MI, GISAT1R, TRISHNA will likely open new oppor-
tunities for more accurate and timely monitoring of freshwater algal blooms. This 
chapter has demonstrated that while significant progress has been made in spec-
tral index-based monitoring of freshwater algal blooms, there remains considerable 
scope for improvement. The future of algal bloom monitoring lies in the develop-
ment of more sophisticated, integrated approaches that can provide reliable, timely, 
and actionable information for water resource managers and stakeholders. As we 
continue to face increasing environmental challenges, the role of remote sensing and 
spectral indices in monitoring and managing freshwater ecosystems will become 
increasingly important. 

Competing Interests The author declares that there are no competing interests related to this 
chapter. 

References 

Akinnawo SO (2023) Eutrophication: causes, consequences, physical, chemical and biological 
techniques for mitigation strategies. Environ Challenges 12:100733. https://doi.org/10.1016/j. 
envc.2023.100733 

Alawadi F (2010) Detection of surface algal blooms using the newly developed algorithm surface 
algal bloom index (SABI). In: Remote sensing of the ocean, sea ice, and large water regions 
2010, vol 7825. SPIE, pp 45–58. https://doi.org/10.1117/12.862096

https://doi.org/10.1016/j.envc.2023.100733
https://doi.org/10.1016/j.envc.2023.100733
https://doi.org/10.1117/12.862096


7 Remote Sensing of Freshwater Algal Blooms: A Spectral Index Approach 159

Amorim CA, do Nascimento Moura A (2021) Ecological impacts of freshwater algal blooms on 
water quality, plankton biodiversity, structure, and ecosystem functioning. Sci Total Environ 
758:143605. https://doi.org/10.1016/j.scitotenv.2020.143605 

Bănăduc D, Simić V, Cianfaglione K et al (2022) Freshwater as a sustainable resource and generator 
of secondary resources in the 21st century: Stressors, threats, risks, management and protection 
strategies, and conservation approaches. Int J Environ Res Public Health 19(24):16570. https:// 
doi.org/10.3390/ijerph192416570 

Beal MR, Özdoğan M, Block PJ (2024) A machine learning and remote sensing-based model 
for algae pigment and dissolved oxygen retrieval on a small inland lake. Water Resour Res 
60(3):e2023WR035744. https://doi.org/10.1029/2023WR035744 

Beck R, Zhan S, Liu H et al (2016) Comparison of satellite reflectance algorithms for estimating 
chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense 
coincident surface observations. Remote Sens Environ 178:15–30. https://doi.org/10.1016/j.rse. 
2016.03.002 

Bellinger EG, Sigee DC (2015) Freshwater algae: identification, enumeration and use as bioindi-
cators. Wiley, London. https://doi.org/10.1002/9780470689554 

Brooks BW, Lazorchak JM, Howard MD et al (2016) Are harmful algal blooms becoming the 
greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicol 
Chem 35(1):6–13. https://doi.org/10.1002/etc.3220 

Burford MA, Willis A, Xiao M et al (2023) Understanding the relationship between nutrient avail-
ability and freshwater cyanobacterial growth and abundance. Inland Waters 13(2):143–152. 
https://doi.org/10.1080/20442041.2023.2204050 

Caballero I, Fernández R, Escalante OM et al (2020) New capabilities of Sentinel-2A/B satellites 
combined with in situ data for monitoring small harmful algal blooms in complex coastal waters. 
Sci Rep 10:8743. https://doi.org/10.1038/s41598-020-65600-1 

Cao M, Qing S, Jin E et al (2021) A spectral index for the detection of algal blooms using Sentinel-2 
Multispectral Instrument (MSI) imagery: a case study of Hulun Lake, China. Int J Remote Sens 
42(12):4514–4535. https://doi.org/10.1080/01431161.2021.1897186 

Chen N, Wang S, Zhang X, Yang S (2020) A risk assessment method for remote sensing of cyanobac-
terial blooms in inland waters. Sci Total Environ 740:140012. https://doi.org/10.1016/j.scitotenv. 
2020.140012 

Chen J, Chen S, Fu R et al (2022) Remote sensing big data for water environment monitoring: 
current status, challenges, and future prospects. Earth’s Future 10(2):e2021EF002289. https:// 
doi.org/10.1029/2021EF002289 

Choi B, Lee J, Park B, Sungjong L (2023) A study of cyanobacterial bloom monitoring using 
unmanned aerial vehicles, spectral indices, and image processing techniques. Heliyon 9(5). 
https://doi.org/10.1016/j.heliyon.2023.e16343 

Colkesen I, Ozturk MY, Altuntas OY (2024) Comparative evaluation of performances of algae 
indices, pixel-and object-based machine learning algorithms in mapping floating algal blooms 
using Sentinel-2 imagery. Stochastic Environ Res Risk Assess 38(4):1613–1634. https://doi. 
org/10.1007/s00477-023-02648-1 

Dogliotti AI, Gossn JI, Vanhellemont Q, Ruddick KG (2018) Detecting and quantifying a massive 
invasion of floating aquatic plants in the Río de la Plata turbid waters using high spatial resolution 
ocean color imagery. Remote Sens 10(7):1140. https://doi.org/10.3390/rs10071140 

Fang C, Song KS, Shang YX et al (2018) Remote sensing of harmful algal blooms variability for 
Lake Hulun using adjusted FAI (AFAI) algorithm. J Environ Inform 34(2):108–122 

Gholizadeh MH, Melesse AM, Reddi L (2016) A comprehensive review on water quality parameters 
estimation using remote sensing techniques. Sensors 16(8):1298. https://doi.org/10.3390/s16 
081298 

Gholizadeh MH, Melesse AM, Reddi L (2016) Spaceborne and airborne sensors in water quality 
assessment. Int J Remote Sens 37(14):3143–3180. https://doi.org/10.1080/01431161.2016.119 
0477

https://doi.org/10.1016/j.scitotenv.2020.143605
https://doi.org/10.3390/ijerph192416570
https://doi.org/10.3390/ijerph192416570
https://doi.org/10.1029/2023WR035744
https://doi.org/10.1016/j.rse.2016.03.002
https://doi.org/10.1016/j.rse.2016.03.002
https://doi.org/10.1002/9780470689554
https://doi.org/10.1002/etc.3220
https://doi.org/10.1080/20442041.2023.2204050
https://doi.org/10.1038/s41598-020-65600-1
https://doi.org/10.1080/01431161.2021.1897186
https://doi.org/10.1016/j.scitotenv.2020.140012
https://doi.org/10.1016/j.scitotenv.2020.140012
https://doi.org/10.1029/2021EF002289
https://doi.org/10.1029/2021EF002289
https://doi.org/10.1016/j.heliyon.2023.e16343
https://doi.org/10.1007/s00477-023-02648-1
https://doi.org/10.1007/s00477-023-02648-1
https://doi.org/10.3390/rs10071140
https://doi.org/10.3390/s16081298
https://doi.org/10.3390/s16081298
https://doi.org/10.1080/01431161.2016.1190477
https://doi.org/10.1080/01431161.2016.1190477


160 K. Patil et al.

Griffith AW, Gobler CJ (2020) Harmful algal blooms: a climate change co-stressor in marine and 
freshwater ecosystems. Harmful Algae 91:101590. https://doi.org/10.1016/j.hal.2019.03.008 

Guo F, Kainz MJ, Sheldon F, Bunn SE (2016) The importance of high-quality algal food sources 
in stream food webs–current status and future perspectives. Freshwater Biol 61(6):815–831. 
https://doi.org/10.1111/fwb.12755 

Hallegraeff GM (2003) Harmful algal blooms: a global overview. In: Manual on Harmful Marine 
Microalgae. Monographs on Oceanographic Methodology, 2nd edn, IOC-UNE-SCO, Paris, 
25–49 

Ho JC, Michalak AM, Pahlevan N (2019) Widespread global increase in intense lake phyto-
plankton blooms since the 1980s. Nature 574(7780):667–670. https://doi.org/10.1038/s41586-
019-1648-7 

Hu C (2009) A novel ocean color index to detect floating algae in the global oceans. Remote Sens 
Environ 113(10):2118–2129. https://doi.org/10.1016/j.rse.2009.05.012 

Hu C, He MX (2008) Origin and offshore extent of floating algae in Olympic sailing area. Eos 
Trans Am Geophys Union 89(33):302–303. https://doi.org/10.1029/2008EO330002 

Huang C, Chen Y, Zhang S, Wu J (2018) Detecting, extracting, and monitoring surface water from 
space using optical sensors: a review. Rev Geophys 56(2):333–360. https://doi.org/10.1029/201 
8RG000598 

Huete A, Justice C, Van Leeuwen W (1999) MODIS vegetation index (MOD13). Algorithm Theor 
Basis Doc 3(213):295–309 

Huisman J, Codd GA, Paerl HW et al (2018) Cyanobacterial blooms. Nat Rev Microbiol 16(8):471– 
483. https://doi.org/10.1038/s41579-018-0040-1 

Igwaran A, Kayode AJ, Moloantoa KM et al (2024) Cyanobacteria harmful algae blooms: causes, 
impacts, and risk management. Water Air Soil Pollut 235(1):71. https://doi.org/10.1007/s11270-
023-06782-y 

IPCC (2022) Climate change 2022: impacts, adaptation and vulnerability. Contribution of working 
group II to the sixth assessment report of the intergovernmental panel on climate change. 
Cambridge University Press, Cambridge. https://doi.org/10.1017/9781009325844.033 

Karimi B, Hashemi SH, Aghighi H (2024) Application of Landsat-8 and Sentinel-2 for retrieval of 
chlorophyll-a in a shallow freshwater lake. Adv Space Res 74(1):117–129. https://doi.org/10. 
1016/j.asr.2024.03.056 

King T, Hundt S, Hafen K et al (2022) Mapping the probability of freshwater algal blooms with 
various spectral indices and sources of training data. J Appl Remote Sens 16(4):044522. https:// 
doi.org/10.1117/1.JRS.16.044522 

Kislik C, Dronova I, Grantham TE, Kelly M (2022) Mapping algal bloom dynamics in small 
reservoirs using Sentinel-2 imagery in Google Earth Engine. Ecol Indic 140:109041. https:// 
doi.org/10.1016/j.ecolind.2022.109041 

Li J, Liu Y, Xie S et al (2022) Landsat-satellite-based analysis of long-term temporal spatial 
dynamics of cyanobacterial blooms: a case study in Taihu Lake. Land 11(12):2197. https:// 
doi.org/10.3390/land11122197 

Liang Q, Zhang Y, Ma R, Loiselle S, Li J, Hu M (2017) A MODIS-based novel method to distinguish 
surface cyanobacterial scums and aquatic macrophytes in Lake Taihu. Remote Sens 9(2):133. 
https://doi.org/10.3390/rs9020133 

Liu S, Glamore W, Tamburic B et al (2022) Remote sensing to detect harmful algal blooms in inland 
waterbodies. Sci Total Environ 851:158096. https://doi.org/10.1016/j.scitotenv.2022.158096 

Maniyar CB, Kumar A, Mishra DR (2022) Continuous and synoptic assessment of Indian inland 
waters for harmful algae blooms. Harmful Algae 111:102160. https://doi.org/10.1016/j.hal. 
2021.102160 

Mishra S, Mishra DR (2012) Normalized difference chlorophyll index: a novel model for remote 
estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens Environ 
117:394–406. https://doi.org/10.1016/j.rse.2011.10.016

https://doi.org/10.1016/j.hal.2019.03.008
https://doi.org/10.1111/fwb.12755
https://doi.org/10.1038/s41586-019-1648-7
https://doi.org/10.1038/s41586-019-1648-7
https://doi.org/10.1016/j.rse.2009.05.012
https://doi.org/10.1029/2008EO330002
https://doi.org/10.1029/2018RG000598
https://doi.org/10.1029/2018RG000598
https://doi.org/10.1038/s41579-018-0040-1
https://doi.org/10.1007/s11270-023-06782-y
https://doi.org/10.1007/s11270-023-06782-y
https://doi.org/10.1017/9781009325844.033
https://doi.org/10.1016/j.asr.2024.03.056
https://doi.org/10.1016/j.asr.2024.03.056
https://doi.org/10.1117/1.JRS.16.044522
https://doi.org/10.1117/1.JRS.16.044522
https://doi.org/10.1016/j.ecolind.2022.109041
https://doi.org/10.1016/j.ecolind.2022.109041
https://doi.org/10.3390/land11122197
https://doi.org/10.3390/land11122197
https://doi.org/10.3390/rs9020133
https://doi.org/10.1016/j.scitotenv.2022.158096
https://doi.org/10.1016/j.hal.2021.102160
https://doi.org/10.1016/j.hal.2021.102160
https://doi.org/10.1016/j.rse.2011.10.016


7 Remote Sensing of Freshwater Algal Blooms: A Spectral Index Approach 161

Mishra DR, Schaeffer BA, Keith D (2014) Performance evaluation of normalized difference chloro-
phyll index in northern Gulf of Mexico estuaries using the Hyperspectral Imager for the Coastal 
Ocean. Giscience Remote Sens 51(2):175–198. https://doi.org/10.1080/15481603.2014.895581 

Montero D, Aybar C, Mahecha MD et al (2023) A standardized catalogue of spectral indices to 
advance the use of remote sensing in Earth system research. Sci Data 10(1):1–20. https://doi. 
org/10.1038/s41597-023-02096-0 

Mpakairi KS, Muthivhi FF, Dondofema F et al (2024) Chlorophyll-a unveiled: unlocking reservoir 
insights through remote sensing in a subtropical reservoir. Environ Monit Assess 196(4):401. 
https://doi.org/10.1007/s10661-024-12554-w 

Musie W, Gonfa G (2023) Fresh water resource, scarcity, water salinity challenges and possible 
remedies: A review. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e18685 

Nazeer M, Alsahli MM, Nichol JE et al (2023) A novel three-band macroalgae detection index 
(TMI) for aquatic environments. Int J Remote Sens 44(7):2359–2381. https://doi.org/10.1080/ 
01431161.2023.2202339 

Neil C, Spyrakos E, Hunter PD, Tyler AN (2019) A global approach for chlorophyll-a retrieval 
across optically complex inland waters based on optical water types. Remote Sens Environ 
229:159–178. https://doi.org/10.1016/j.rse.2019.04.027 

Oyama Y, Matsushita B, Fukushima T (2015) Distinguishing surface cyanobacterial blooms and 
aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sens 
Environ 157:35–47. https://doi.org/10.1016/j.rse.2014.04.031 

Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. 
Microb Ecol 65:995–1010. https://doi.org/10.1007/s00248-012-0159-y 

Palmer SC, Kutser T, Hunter PD (2015) Remote sensing of inland waters: challenges, progress and 
future directions. Remote Sens Environ 157:1–8. https://doi.org/10.1016/j.rse.2014.09.021 

Qi L, Hu C, Duan H et al (2014) A novel MERIS algorithm to derive cyanobacterial phyco-
cyanin pigment concentrations in a eutrophic lake: theoretical basis and practical considerations. 
Remote Sens Environ 154:298–317. https://doi.org/10.1016/j.rse.2014.08.026 

Rodríguez-López L, Duran-Llacer I, González-Rodríguez L et al (2020) Spectral analysis using 
LANDSAT images to monitor the chlorophyll-a concentration in Lake Laja in Chile. Ecol 
Inform 60:101183. https://doi.org/10.1016/j.ecoinf.2020.101183 

Roegner AF, Corman JR, Sitoki LM et al (2023) Impacts of algal blooms and microcystins in fish on 
small-scale fishers in Winam Gulf, Lake Victoria: implications for health and livelihood. Ecol 
Soc 28(1):49. https://doi.org/10.5751/es-13860-280149 

Rolim SBA, Veettil BK, Vieiro AP, Kessler AB, Gonzatti C (2023) Remote sensing for mapping 
algal blooms in freshwater lakes: a review. Environ Sci Pollut Res 30(8):19602–19616. https:// 
doi.org/10.1007/s11356-023-25230-2 

Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great 
Plains with ERTS. NASA Spec Publ 351(1):309 

Sanseverino I, Conduto D, Pozzoli L et al (2016) Algal bloom and its economic impact. EUR 27905 
EN. https://doi.org/10.2788/660478 

Sahu H, Purohit P, Srivastava A, Singh R, Mishra AP, Arunachalam K, Kumar U (2024) Comparative 
assessment of soil parameters and ecological dynamics in the Western Himalayan wetland and 
its surrounding periphery. Environ Qual Manage 34(1):e22283. https://doi.org/10.1002/tqem. 
22283 

Sheath RG, Wehr JD (2015) Introduction to the freshwater algae. In: Freshwater algae of North 
America. Academic Press, pp 1–11. https://doi.org/10.1016/B978-0-12-385876-4.00001-3 

Shen L, Xu H, Guo X (2012) Satellite remote sensing of harmful algal blooms (HABs) and a potential 
synthesized framework. Sensors 12(6):7778–7803. https://doi.org/10.3390/s120607778 

Shi K, Zhang Y, Qin B, Zhou B (2019) Remote sensing of cyanobacterial blooms in inland waters: 
present knowledge and future challenges. Sci Bull 64(20):1540–1556. https://doi.org/10.1016/ 
j.scib.2019.07.002

https://doi.org/10.1080/15481603.2014.895581
https://doi.org/10.1038/s41597-023-02096-0
https://doi.org/10.1038/s41597-023-02096-0
https://doi.org/10.1007/s10661-024-12554-w
https://doi.org/10.1016/j.heliyon.2023.e18685
https://doi.org/10.1080/01431161.2023.2202339
https://doi.org/10.1080/01431161.2023.2202339
https://doi.org/10.1016/j.rse.2019.04.027
https://doi.org/10.1016/j.rse.2014.04.031
https://doi.org/10.1007/s00248-012-0159-y
https://doi.org/10.1016/j.rse.2014.09.021
https://doi.org/10.1016/j.rse.2014.08.026
https://doi.org/10.1016/j.ecoinf.2020.101183
https://doi.org/10.5751/es-13860-280149
https://doi.org/10.1007/s11356-023-25230-2
https://doi.org/10.1007/s11356-023-25230-2
https://doi.org/10.2788/660478
https://doi.org/10.1002/tqem.22283
https://doi.org/10.1002/tqem.22283
https://doi.org/10.1016/B978-0-12-385876-4.00001-3
https://doi.org/10.3390/s120607778
https://doi.org/10.1016/j.scib.2019.07.002
https://doi.org/10.1016/j.scib.2019.07.002


162 K. Patil et al.

Singh R, Saritha V, Pande CB (2024) Dynamics of LULC changes, LST, vegetation health and 
climate interactions in wetland buffer zone: a remote sensing perspective. Phys Chem Earth, 
Parts A/B/C 135:103660. https://doi.org/10.1016/j.pce.2024.103660 

Singh R, Saritha V, Mishra AP, Pande CB, Sahu H (2025) A comprehensive analysis of water quality 
index in a wetland ecosystem supporting drinking water to major cities in Rajasthan, India. J 
Clean Prod 487:144593. https://doi.org/10.1016/j.jclepro.2024.144593 

Sòria-Perpinyà X, Vicente E, Urrego P et al (2020) Remote sensing of cyanobacterial blooms 
in a hypertrophic lagoon (Albufera of València, Eastern Iberian Peninsula) using multitem-
poral Sentinel-2 images. Sci Total Environ 698:134305. https://doi.org/10.1016/j.scitotenv.2019. 
134305 

Tripathi A, Tiwari RK (2021) Role of space-borne remote sensing technology for monitoring of 
urban and environmental hazards. In: Recent technologies for disaster management and risk 
reduction: sustainable community resilience & responses, pp 295–317. https://doi.org/10.1007/ 
978-3-030-76116-5_18 

Vári Á, Podschun SA, Erős T et al (2022) Freshwater systems and ecosystem services: challenges 
and chances for cross-fertilization of disciplines. Ambio 51(1):135–1511. https://doi.org/10. 
1007/s13280-021-01556-4 

Villa P, Mousivand A, Bresciani M (2014) Aquatic vegetation indices assessment through radiative 
transfer modeling and linear mixture simulation. Int J Appl Earth Obs Geoinf 30:113–127. 
https://doi.org/10.1016/j.jag.2014.01.017 

Wang W, Shi K, Zhang Y, Li N, Sun X, Zhang D et al (2022) A ground-based remote sensing 
system for high-frequency and real-time monitoring of phytoplankton blooms. J Hazard Mater 
439:129623. https://doi.org/10.1016/j.jhazmat.2022.129623 

Watson SB, Whitton BA, Higgins SN, Paerl HW, Brooks BW, Wehr JD (2015) Harmful algal blooms. 
In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America. Academic Press, 
pp 873–920 

Wu D, Li R, Liu J, Khan N (2023) Monitoring algal blooms in small lakes using drones: a case 
study in southern illinois. J Contemp Water Res Educ 177(1):83–93. https://doi.org/10.1111/j. 
1936-704X.2022.3383.x

https://doi.org/10.1016/j.pce.2024.103660
https://doi.org/10.1016/j.jclepro.2024.144593
https://doi.org/10.1016/j.scitotenv.2019.134305
https://doi.org/10.1016/j.scitotenv.2019.134305
https://doi.org/10.1007/978-3-030-76116-5_18
https://doi.org/10.1007/978-3-030-76116-5_18
https://doi.org/10.1007/s13280-021-01556-4
https://doi.org/10.1007/s13280-021-01556-4
https://doi.org/10.1016/j.jag.2014.01.017
https://doi.org/10.1016/j.jhazmat.2022.129623
https://doi.org/10.1111/j.1936-704X.2022.3383.x
https://doi.org/10.1111/j.1936-704X.2022.3383.x


Chapter 8 

Climate Change Adaptation 

and Mitigation: A Short Review 

Prerana Badoni and Rekha Dhanai 

Abstract Climate change affects people’s livelihoods, health, and access to natural 

resources worldwide, with vulnerable communities disproportionately impacted due 

to factors like poverty and reliance on subsistence farming. This review examines 

the climate change concept with respect to the agriculture field. Mountain regions 

serve as early indicators of climate change. Changes in the strength and timing of 

monsoons, driven by climate change, have significant consequences for river flows, 

groundwater recharge, natural hazards, ecosystems, and human livelihoods. While 

researchers struggle to grasp the diverse impacts of climate change fully, it is clear 

that it increasingly affects people’s lives, particularly in developing nations. Men and 

women experience climate change differently, with men often compelled to migrate 

while climate change exacerbates the feminization of agriculture. Developing effec-

tive adaptation strategies is crucial to address these challenges. To address emis-

sions of greenhouse gas (GHG) and climate change in food and agriculture, prior-

itizing efficiency of energy use and ecologically sustainable production practices 

are crucial. Increasing soil carbon levels and implementing energy-efficient systems 

can positively impact greenhouse gas levels and climate change outcomes. However, 

fragmented agriculture and localized mitigation efforts pose challenges, especially 

for resource-intensive implementation. Disparities exist between developed nations 

required to reduce emissions and developing nations experiencing climate change 

effects, complicating mitigation efforts. International aid mechanisms could assist 

vulnerable smallholders in developing nations, but current opportunities are limited. 

Some mitigation strategies may disrupt conventional food production, risking food 

security. Ultimately, the most effective and economical approach is to avoid activities 

contributing to global warming. 

Keywords Climate change · Mitigation · Global warming · Agriculture

P. Badoni 

Department of Microbiology, Combined PG Institute of Medical Sciences and Research, 

Kuanwala, Dehradun, India 

R. Dhanai (B) 

Department of Agriculture, Tula’s Institute, Dehradun, India 

e-mail: dhanai@tulas.edu.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 

V. Saritha et al. (eds.), Remote Sensing for Environmental Monitoring, 

https://doi.org/10.1007/978-981-96-5546-5_8 

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5546-5_8&domain=pdf
mailto:dhanai@tulas.edu.in
https://doi.org/10.1007/978-981-96-5546-5_8


164 P. Badoni and R. Dhanai

8.1 Introduction 

As a result of utilizing fossil fuels for energy and other human activities, green-

house gases have accumulated in the atmosphere, which has led to climate change. 

Peoples are vulnerable to climate change directly through variations in water, air, 

and food quality and indirectly through altered weather patterns like temperature, 

precipitation, and the severity of life-threatening events. 

Therefore, Climate change refers to a shift in the climate that is caused by either 

natural or human-induced variations and that lasts for a long period of time, typically 

decades or longer, as evidenced by variations in the mean and/or variability of its 

attributes (Shah et al. 2014). In addition to unpredictability in natural climate has 

been observed over comparable periods, United Nations Framework Convention on 

Climate Change (UNFCCC) defined climate change as an alteration in the climate 

brought on by different human activities that changes the composition of the atmo-

sphere globally (Singh et al. 2010). Variations in the average condition and other 

climate data across all time and space scales are referred to as climate variability, 

going beyond the size of a single weather event. 

Variability may result from changes in external forcing, whether man-made or 

natural, as well as from the internal natural processes that take place within the climate 

system. Mountain ranges are primary signs of a changing climate (Dhanai et al. 2014; 

Singh et al. 2010). Although there is not enough particular information and data on 

human well-being, climatic changes will also have an influence on people’s health, 

livelihoods, and security of natural resources everywhere (World Health Organisation 

2008). People are at greater risk from climate change due to poverty, inadequate 

infrastructure, dependency on subsistence farming, and usage of forest products 

as a means of livelihood. The Climate change consequences are compounded by 

numerous additional societal and environmental pressures, many of which are already 

known to be severe (Haigh 1989). As a result, it is necessary to strengthen community 

capacities and develop strategies for climate change adaptation. 

The monsoon’s timing and intensity are drastically changing as an effect of 

ongoing climate change. While not uniform with relation to direction, intensity, or 

rate across the region, the consequences could be profound for people and their means 

of subsistence, as well as for the ecosystem, natural hazards, groundwater recharge, 

and river flows (Treidel et al. 2011). Researchers are having difficulty identifying 

the variety of impacts due to the present condition of our understanding of risk eval-

uation and climate change is required to direct future action (Hurlbert et al. 2019). 

People’s lives are being impacted by climate change more and more, especially the 

poor in developing nations. The susceptibility of men and women to climate change 

is not equal, they will experience different consequences as a result. The case studies 

demonstrate that while men are compelled to migrate, climate change exacerbates 

the trend of feminization in agriculture (Agrawal et al. 2015; Tumbe 2015). Because 

their livelihoods depend on agriculture and availability or accessibility to natural 

resources (Rautela and Karki 2015), in developing countries both men and women 

are already dealing with problems that climate change exacerbates.
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8.2 Vulnerability to Climate Change 

The term “vulnerability” describes how susceptible a system or society is to adverse 

impact of changing climate that includes climate extremes and variability, in addi-

tion to how well they able to resist these impacts. The degree of vulnerability of a 

system is determined by its sensitivity and adaptability along with the kind, inten-

sity, and pace of changing climate and the differences to which it is exposed (Change 

2007). Vulnerability can be highly dynamic in both space and time due to the system 

consequences and adaptive capacity can vary greatly over decades and within nations 

(Change 2007). 

It is consequently essential to create resilient agricultural systems that can absorb 

disruptions and have a significant capacity for stress and change adaptation (Lipper 

et al. 2014). Climate change has both local and global effects on food security (Betts 

et al. 2018). Climate change will impact agricultural food security systems world-

wide, including subsistence-level, import and export-based systems. Affected indus-

tries including agriculture, forestry, livestock, and fisheries will be affected by varia-

tions in average temperature and precipitation as well as an increase in severe events. 

Numerous effects need to be addressed across sectors, including increased events of 

soil erosion and land degradation, changes in availability of water, loss of biodiver-

sity, more recurring and severe disease and pest outbreaks, as well as natural disasters 

(Rosenzweig and Liverman 1992). 

8.3 Adaptation to Climate Change 

The Intergovernmental Panel on Climate Change (IPCC) characterizes adaptation as 

a modification of human or natural systems in reaction to real or predicted climatic 

stressors or their consequences, which minimizes damage or exploits of advantageous 

opportunities (Change 2007). The act of changing to better fit a circumstance or 

environment is called adaptation. It is a process that is perpetual. It entails managing 

both abrupt events and gradual, long-term changes that occur in a region over time. 

These changes can be caused by both climate and weather, in addition to other 

factors like economic and societal pressures, market volatility or connect, ecosystem 

dynamics, regulations and laws, infrastructural facilities, etc. 

It is possible to distinguish between anticipatory, autonomous, and planned adap-

tations. People whose livelihoods depend on agriculture have historically created 

means of coping with climate change independently. The rate of climate change 

occurring today will affect known variability patterns to the extent that individuals 

will face challenges they are ill-prepared to handle (Luers and Moser 2006). Delib-

erate and proactive adaptation is therefore a contemporary problem. However, since 

major vulnerability is regional, hence site-specific adaptation is necessary. It has 

been noted that the Himalayan Mountains’ traditional agriculture offers a wealth of 

agricultural biodiversity and has proven resistive to crop diseases. The crops have
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the innate potentials to resist environmental risks and other natural threats because 

they have been adapted to the environmental circumstances in the area (Dhanai et al. 

2014). 

8.4 Effective Adaptation Strategies 

(a) Creation of more economical strategies with a number of benefits. Implementing 

substantial financial incentives such as microcredit, covering environmental 

services, and reducing the agriculture supply sector’s marketing power may 

be necessary to achieve this (Turral et al. 2011). 

(b) Employing regional coping mechanisms and indigenous knowledge as a spring-

board for adaptation planning. Although local communities have a tremendous 

amount of information regarding their ability to cope with climate extremes 

and severe weather occurrences, rapidly shifting environmental conditions will 

necessitate updating regional knowledge with additional scientific observa-

tions and creating association between neighboring regions and nations to 

exchange know-how with regions currently undergoing these transformations 

(Intergovernmental Panel on Climate Change 2023). 

(c) Support for pertinent domestic agricultural research. Research should concen-

trate on cultivars resistance to emerging diseases and pests as well as heat, 

salinity, and drought (Change 2007). 

(d) The use of gender-responsive tactics. When creating strategies, it is important 

to take into account the distinct roles, responsibilities, rights, and resources of 

boys and girls as well as men and women (Agrawal et al. 2015). 

(e) Supporting multidisciplinary institutions and procedures that can ease changes 

in the use and access to resource, resolve differences, and defend the right of 

both individuals’ and groups’ to natural assets and land. 

8.5 Adaptation Planning 

Any planning for adaptation must consider the degree of uncertainty in scenarios for 

environmental changes, and the actual plans must be adaptable. The adaptation plan-

ning may encounter some issues, which must be considered when seeking a solution. 

Although urgent, adaptation calls for significant financial investment. Developing 

countries are unlikely to, especially the least developed ones, will have the funds and 

technical competence necessary for a foreseen and planned intervention. To cover 

the additional expenses of designing and putting interventions into place, technical 

and financial assistance will be needed (Matsa and Matsa 2021). 

Climate change is regionally and locally dependent. In-depth analyses of local 

impacts must be included in adaptation assessment methodologies to comprehend
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and plan interventions. These interventions must be incorporated into more compre-

hensive, coherent adaptation programmes. As the effects of climate change evolve, 

so must each component of adaptation. Work on adaptation calls for a variety of tech-

nical techniques that can be used at various rates and times. This also implies that any 

necessary inputs must be planned and maintained throughout the entire adaptation 

period. 

8.6 Mitigation to Climate Change 

Some measures, which are characterized as any human (anthropogenic) action that 

can improve the sinks of greenhouse gas emissions or lessen their sources (abate-

ment), have been adopted to lessen the negative effects of climate change (sequestra-

tion). A long-term mitigation scenario or several are typically developed as part of 

mitigation assessments. A quantified projection of how future greenhouse gas emis-

sions can be decreased in comparison to one or more baseline scenarios is known as 

a mitigation scenario. An evaluation of technologies and procedures that can both 

mitigate climate change and advance governmental development goals is provided 

to policymakers by a mitigation assessment. 

The assessment also identifies potential investments for projects and programmes 

and gives a general idea of how much would it cost to stop climatic changes. Climate 

change is largely caused by changes in land use and agriculture. The Fourth Assess-

ment Report of the IPCC states that agriculture, which includes the production of 

crops, pastures, and cattle, and forestry account for 13 and 17 percent of total anthro-

pogenic greenhouse gas emissions, respectively (Change 2007). Other emissions 

related to agriculture such as fertilizer production, food supply, packaging (waste), 

and cooling and heating are not included in this contribution (energy supply). 

A human intervention intended to lessen greenhouse gas sources or improve sinks 

is known as climate change mitigation (Change 2007). Climate change mitigation is a 

global responsibility. A significant amount of potential for reducing GHGs is offered 

by forestry and agriculture. By 2030, the IPCC predicts that agriculture will have a 

global technical mitigation potential of between 5500 and 6000 Mt CO2 equivalent 

annually, with 89 percent of that potential coming from soil carbon sequestration 

(Change 2007). 

At the national level, the evaluation of mitigation potential continues to be a 

crucial tool for setting priorities. The focus of mitigation activities should be on 

the five major natural resources sector, which includes cattle, forestry, rangeland, 

agriculture, and fisheries. In the agricultural industry as a whole, the traditional 

mitigation options include forest-related measures to decrease degradation of forest 

and deforestation and increase reforestation and afforestation, as well as interventions 

in forest management to preserve or raise the carbon density of forests, and also take 

initiatives to increase carbon stocks and improve fuel substitution.
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Even though there are many adaptation options, there are still no established miti-

gation strategies for cropland. These actions include increasing biodiversity, encour-

aging production of legumes in crop rotations, making quality seeds more accessible, 

implementing integrated livestock and agriculture systems, avoiding the burning of 

crop residue, encouraging systems of low-energy production, improving forest fire 

control and increasing energy efficiency in commercial agriculture and agro based 

industries. Among the most promising choices with a variety of synergies is soil 

carbon sequestration. This option offers advantages for soil fertility and produc-

tivity, biodiversity, and water storage capacity of soil by raising concentrations of 

carbon in the soil through more suitable management practices. 

8.7 Remote Sensing Applications in Climate Mitigation 

Remote sensing and GIS (Geographic Information System) technologies are crucial 

for studying climate change and agriculture. They provide a wide range of envi-

ronmental data to create precision maps, offer crop information, estimate yields, 

and more. This is highly beneficial not only for farmers but also for governments, 

enabling them to implement necessary projects and support initiatives to aid farmers 

effectively. It helps in monitoring of natural disasters, evaluating alterations in land 

use pattern and also in tracking deforestation. 

The abundance of data produced facilitates well-informed resource management 

and environmental conservation decision-making (Machireddy 2023). There are 

many ways that remote sensing is used in carbon-related tasks. Remote sensing plays 

a vital role in understanding climate change dynamics by providing researchers with 

essential data on Earth’s climate system. It captures temperature, precipitation, sea 

level, ice cover, and more information. The high spatial and temporal resolution of 

remote sensing data enables more accurate climate modeling and promptly enhances 

decision-making for addressing climate change challenges. 

8.8 Recommendation and Conclusion 

Energy efficiency and ecologically sustainable production methods must be priori-

tized more in order to deal with GHGs and climate change concerns in the food and 

agricultural sector (Machireddy 2023). Enhancing soil carbon levels and developing 

energy-efficient food and agricultural systems has the ability to enhance climate 

change and greenhouse gas situations. Because agriculture is fragmented and miti-

gation is localized, implementation requires a lot of resources (Vermeulen et al. 

2012), which may cause mitigation implementation to suffer. Additionally, if devel-

oping nations’ extensive systems are to play a significant role. In this regard, coun-

tries that are required to reduce the emissions of GHGs (mainly developed) and 

those that are more affected by the ways that climate change is altering patterns of
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climate variability have very different perceptions of mitigation. However, there is a 

new opportunity—international procedures that may direct financial aid to the most 

disadvantaged in developing countries—that is yet a long way from improving the 

lives of smallholders. Some mitigation strategies may even interfere with conven-

tional food production processes, endangering the security of those systems’ supply 

of food. Avoiding actions that are mostly contribute to the global warming is the most 

cost-effective and simplest strategy to stop harm from the effects of human activity 

on the food production systems and climate. 
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Chapter 9 

Satellite-Based Monitoring of Trophic 
State: Assessing Water Quality in Lake 
Llanquihue 

Neftalí Flores Betansson, Lien Rodríguez-López, and Santiago Yépez 

Abstract Lake Llanquihue is a body of water of significant economic and ecological 
importance for Chile, being the second largest lake in the country and a hub for 
essential tourist activities. Consequently, this study aims to assess its water quality 
by estimating chlorophyll-a concentrations using algorithms derived from Sentinel-2 
satellite data and three atmospheric correction methods: Sen2Cor, C2X, and Acolite. 
The results suggest that Acolite, in combination with the B4/B5 algorithm, yields 
the most efficient simulations. However, the accuracy of the results is limited due 
to the large surface area of the lake and the small number of monitoring stations. 
Therefore, greater spatial coverage of in-situ measurements is needed to refine the 
model and improve its accuracy. This study highlights the importance and potential 
of satellite remote sensing in monitoring and predicting environmental changes in 
aquatic ecosystems. 

Keywords Water quality · Sentinel 2 · Chlorophyll-a · Atmospheric correction 

9.1 Introduction 

Eutrophication is a natural process that occurs in water bodies, characterized by 
increased nutrient concentrations, such as phosphorus and nitrogen, which negatively 
affect aquatic ecosystems (Glibert et al. 2005). However, human activities, such 
as urbanization, pollution, agriculture, and tourism, have accelerated this process 
(Glibert et al. 2005). 

To assess the trophic status of a water body, indices have been developed that 
relate factors such as phosphorus, nitrogen, and chlorophyll-a concentrations, as
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well as Secchi disk depth (Carlson 1977; Smith et al. 1999). Based on these indices, 
the trophic state of a water body can range from oligotrophic—where the water is 
mostly transparent and well-oxygenated—to hyper-eutrophic, characterized by an 
abundance of microphytes that reduce light penetration and cause anoxia in deeper 
waters (Harper 1992). 

In Chile, the General Directorate of Water (DGA) operates a network of water 
quality monitoring stations that collect and publish real-time data on the physic-
ochemical conditions of water bodies through in situ sampling and meteorolog-
ical measurements (Dirección 2007). However, as these processes are associated 
with high economic costs (Dirección 2009) the spatial and temporal representative-
ness of the data can be compromised due to the limited number of sampling points 
and the frequency of measurements, making it challenging to inform conservation, 
protection, and restoration efforts. 

One technique to address these limitations is the use of satellite data. Sensors 
such as Sentinel-2 and Landsat-8 are widely used worldwide to estimate parameter 
values in lake ecosystems (Bresciani et al. 2018; Cui et al. 2022; Guo et al. 2023; 
Hossen et al. 2022; Oyama et al. 2009; Patra et al. 2017; Sivakumar et al. 2022; 
Theologou et al. 2016; Ticman et al. 2018; Wang et al. 2022; Zhang et al. 2020). 
Other radiometric sources, such as unmanned aerial vehicles (UAVs), have been 
employed for parameter estimation at smaller spatial scales (Rahul et al. 2023; Wu  
et al. 2019). 

This research focuses on Lake Llanquihue, which faces environmental challenges 
due to volcanic activity, urbanization, and various human activities (Secretaría 2013). 
The presence of the salmon industry also poses risks to the lake’s health (Bohle et al. 
2009). In this context, satellite data presents an opportunity to monitor the lake’s water 
quality variability and guide conservation and prevention efforts. The objective of 
this study is to develop an efficient model to estimate chlorophyll-a concentrations 
in Lake Llanquihue by applying single or multiple regression models using Sentinel-
2 satellite data. The hypothesis is that regression models based on satellite data 
can effectively capture the spatial variability of water quality parameters in Lake 
Llanquihue. 

9.2 Materials and Methods 

9.2.1 Study Area 

Lake Llanquihue (Fig. 9.1) is located near the Andes Mountains range in the Los 
Lagos Region, Chile, at an elevation of 51 m above sea level (m.a.s.l.), between the 
provinces of Llanquihue and Osorno. Its basin covers an approximate area of 1566.8 
km2 and is administered by four municipalities (Llanquihue, Puerto Octay, Frutillar, 
and Puerto Varas), with their main urban centers situated along the lake’s shores, 
along with smaller towns such as Ensenada and Las Cascadas. It is the second-largest
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Fig. 9.1 Geographical location of Llanquihue Lake and DGA monitoring stations (red dots) 

lake in Chile, after Lake General Carrera, with a surface area of approximately 870 
km2. The average depth is about 180 m, with some areas exceeding 300 m (Campos 
et al. 1988). 

Of glacial origin, the lake has been subjected to continuous volcanic activity due 
to its proximity to the Osorno and Calbuco volcanoes. Past eruptions of Osorno 
Volcano caused part of the lake to separate, giving rise to Lake Todos Los Santos. 
Its main tributaries, the Pescado and Tepú rivers, have flow rates of 4 and 2 m3/s 
respectively, making its hydrological regime predominantly pluvial. The lake has a 
single natural outflow, the Maullín River, which originates in the western sector of 
the lake and extends for 85 km, with an average flow rate of 72 m3/s (Niemayer and 
Cereceda 1984). 

The climate in the basin is temperate-rainy with Mediterranean influence (Sarri-
colea et al. 2017), characterized by year-round precipitation, which decreases in the 
summer months and reaches its maximum values in winter. According to hydro-
meteorological data from the DGA station “Maullín River in Llanquihue” (Alvarez-
Garreton et al. 2018; Barría et al. 2021), between 1979 and 2019, the mean monthly 
precipitation exceeded 100 mm in all months of the year, with the lowest values 
recorded in February and January, at 100.5 mm and 105.8 mm, respectively. The 
highest values were observed in May and June, with 265.7 mm and 301.4 mm, 
respectively. In contrast, the mean temperature ranged between 6.8 °C in July and 
15.1 °C in February (Fig. 9.2).



174 N. F. Betansson et al.

Fig. 9.2 Ombrothermic diagram for the Llanquihue Lake basin using data from the DGA station 
“Río Maullín en Llanquihue” 

9.2.2 In-Situ Measurement 

The Dirección General de Aguas (DGA) monitors water quality parameters at eight 
stations distributed across four sectors of the lake: Frutillar (FR1 and FR2), Puerto 
Octay (PO1 and PO2), Puerto Varas (PV1 and PV2), and Ensenada (EN1 and EN2) 
(Fig. 9.1). Chlorophyll-a data was collected through monthly monitoring campaigns 
conducted between October 14, 2020, and September 8, 2021, at depths of 0, 10, 20, 
30, 50, 80, and 100 m. For this study, only the values obtained at the surface (0-m 
depth) were used. 

9.2.3 Sentinel-2 Image Preprocessing 

Sentinel-2 images are acquired from a pair of satellites, Sentinel-2A and Sentinel-2B, 
positioned at opposite sides of the globe. Together, they cover a swath of 290 km. Each 
satellite has a revisit time of 10 days, and combined, they enable image acquisition
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for the same area every 5 days. The satellites have 13 spectral bands with spatial 
resolutions ranging from 10 to 60 m. 

Sentinel-2 images were downloaded from the Copernicus platform (https://datasp 
ace.copernicus.eu/) and processed using SNAP, ENVI 5.6, and ArcGIS 10.5 software. 
A total of 17 Sentinel-2 images were selected, each within a maximum of 10 days 
from the sampling date (Table 9.1).

The calibration and validation periods for the model were defined as 70% and 
30% of the total number of images, respectively, corresponding to 12 images for the 
calibration period and 5 for the validation period. The images selected for validation 
were chosen to represent the inter-annual variability of chlorophyll-a concentrations 
and include the following dates: 06/11/2020, 16/12/2020, 07/02/2021, 17/06/2021, 
and 11/08/2021. 

Before processing, each image underwent atmospheric correction to remove the 
effects of atmospheric scattering and absorption of ultraviolet radiation, allowing the 
retrieval of reflectance values (the proportion of incident solar radiation reflected by 
a given surface). 

Various methodologies are available for performing atmospheric correction 
depending on the type of imagery. In this study, Sentinel-2 images were corrected 
using the Sen2Cor, C2RCC, and Acolite atmospheric correction methods with the 
goal of identifying which method yields the most accurate chlorophyll-a estimations 
for Lake Llanquihue: 

• Sen2Cor is a processor for Sentinel-2 images that performs atmospheric correc-
tion at Level 1-C to derive surface reflectance values at lower atmospheric 
layers. 

• C2RCC (Case 2 Regional Coast Colour) is an atmospheric correction processor 
that employs a deep learning approach using neural networks trained on simu-
lated data of water reflectance and top-of-atmosphere radiances. Its main prod-
ucts relate to the inherent optical properties (IOPs) of water, which are depen-
dent solely on the absorption and scattering of its constituents (Brockmann et al. 
2016). The method includes three sets of neural networks tailored to different 
research objectives: C2RCC-Nets (standard neural networks recommended for 
use in eutrophic or mesotrophic waters), C2X-NETS (specialized neural networks 
for water bodies with high concentrations of suspended matter and chlorophyll-a), 
and C2X-COMPLEX-Nets (specialized neural networks for more complex inland 
waters) (Soriano-González et al. 2022). In this study, we used the C2X-NETS 
network. 

• Acolite is a processor developed by RBINS for atmospheric correction in 
coastal and inland waters, utilizing the “Dark Spectrum Adjustment” approach 
(Vanhellemont 2019a, b, 2020; Vanhellemont and Ruddick 2018, 2021).

https://dataspace.copernicus.eu/
https://dataspace.copernicus.eu/
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Table 9.1 Sentinel-2 images used for chlorophyll-a estimation in Lake Llanquihue 

ID ID imagen Image description Sentinel 
A/B 

Image date Measurement 
date 

Differences 
(days) 

1 20,102,020 S2A_MSIL1C_ 
20201020T143731_ 
N0209_R096_ 
T18GXV_ 
20201020T181238 

A 20–10–2020 14–10–2020 6 

2 6,112,020 S2A_MSIL1C_ 
20201106T142741_ 
N0209_R053_ 
T18GXV_ 
20201106T181041 

A 06–11–2020 16–11–2020 10 

3 19,112,020 S2A_MSIL1C_ 
20201119T143731_ 
N0209_R096_ 
T18GXV_ 
20201119T181130 

A 19–11–2020 16–11–2020 3 

4 16,122,020 S2A_MSIL1C_ 
20201216T142731_ 
N0209_R053_ 
T18GXV_ 
20201216T175850 

A 16–12–2020 21–12–2020 5 

5 21,122,020 S2B_MSIL1C_ 
20201221T142729_ 
N0209_R053_ 
T18GXV_ 
20201221T175831 

B 21–12–2020 21–12–2020 0 

6 18,012,021 S2A_MSIL1C_ 
20210118T143731_ 
N0500_R096_ 
T18GXV_ 
20230527T012249 

A 18–01–2021 18–01–2021 0 

7 30,012,021 S2B_MSIL1C_ 
20210130T142729_ 
N0209_R053_ 
T18GXV_ 
20210130T180923 

B 30–01–2021 08–02–2021 9 

8 2,022,021 S2B_MSIL1C_ 
20210202T143729_ 
N0209_R096_ 
T18GXV_ 
20210202T181103 

B 02–02–2021 08–02–2021 6 

9 7,022,021 S2A_MSIL1C_ 
20210207T143731_ 
N0209_R096_ 
T18GXV_ 
20210207T181214 

A 07–02–2021 08–02–2021 1

(continued)
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Table 9.1 (continued)

ID ID imagen Image description Sentinel
A/B

Image date Measurement
date

Differences
(days)

10 21,032,021 S2B_MSIL1C_ 
20210321T142729_ 
N0500_R053_ 
T18GXV_ 
20230605T132834 

B 21–03–2021 16–03–2021 5 

11 13,042,021 S2B_MSIL1C_ 
20210413T143729_ 
N0500_R096_ 
T18GXV_ 
20230517T033256 

B 13–04–2021 14–04–2021 1 

12 10,052,021 S2B_MSIL1C_ 
20210510T142729_ 
N0500_R053_ 
T18GXV_ 
20230207T145059 

B 10–05–2021 11–05–2021 1 

13 14,062,021 S2A_MSIL1C_ 
20210614T142731_ 
N0500_R053_ 
T18GXV_ 
20230131T203811 

A 14–06–2021 15–06–2021 1 

14 17,062,021 S2A_MSIL1C_ 
20210617T143731_ 
N0500_R096_ 
T18GXV_ 
20230201T041508 

A 17–06–2021 15–06–2021 2 

15 8,082,021 S2B_MSIL1C_ 
20210808T142729_ 
N0500_R053_ 
T18GXV_ 
20230113T154358 

B 08–08–2021 09–08–2021 1 

16 11,082,021 S2B_MSIL1C_ 
20210811T143729_ 
N0500_R096_ 
T18GXV_ 
20230211T201839 

B 11–08–2021 09–08–2021 2 

17 7,092,021 S2B_MSIL1C_ 
20210907T142729_ 
N0500_R053_ 
T18GXV_ 
20230111T021004 

B 07–09–2021 07–09–2021 0



178 N. F. Betansson et al.

Table 9.2 Chlorophyll-a estimation algorithms utilizing Sentinel-2 satellite data 

Algorithm Formula Atmospheric correction 

Bi i ∈ [1, 11] Sen2Cor, C2X-COMPLEX-Nets and Acolite 

Bi/Bj i ∈ [1, 11], j ∈ [1, 11], i < j Sen2Cor, C2X-COMPLEX-Nets and Acolite 

NDVI (B8 – B4)/(B8 + B4) Sen2Cor and Acolite 

GNDVI (B8 – B3)/(B8 + B3) Sen2Cor and Acolite 

CGI (B8/B3) − 1 Sen2Cor and Acolite 

9.2.4 Algorithms for Estimating Chlorophyll-a from Satellite 

Data. 

Several authors have identified various algorithms for estimating water quality param-
eters from satellite data (Chusnah et al. 2023; Cui et al. 2022; Hossen et al. 2022; 
Nguyen et al. 2020; Rajkumar and Sivakumar 2022). The chlorophyll-a estimation 
algorithms used in this study are based on individual bands, the ratios between each 
band and others, and specific spectral indices for Acolite and Sen2Cor, including the 
Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference 
Vegetation Index (GNDVI), and the Green Coverage Index (GCI) (Table 9.2). 

9.2.5 Statistic Validation 

The model’s efficiency is defined by its ability to simulate chlorophyll-a concen-
trations as closely as possible to the observed values. In this study, efficiency was 
assessed during the validation period using criteria and statistics commonly employed 
in hydrology: the root mean square error (RMSE) (Sezen et al. 2018), percent 
statistical bias (PBIAS), and mean absolute percent error (MAPE). 

Root Mean Square Error (RMSE): RMSE is a statistical measure that quantifies 
the difference between the values predicted by the model and the observed values. It is 
calculated as the square root of the average of the squares of the residuals (Eq. 9.1). 
As a positive value, the optimal RMSE is 0, indicating high model efficiency in 
simulating flow. 

RMSE =

√

√

√

√

1 

n 

n
∑

i=1 

(ŷi − yi)
2 (9.1) 

where 

ŷi = i-th simulated value (µg/L) 
yi = i-th observed value (µg/L) 
n = total number of observations.
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Percentage Bias Statistic (PBIAS): This statistic provides a percentage compar-
ison between the estimated and observed values relative to the average of the observed 
values. A PBIAS value of zero indicates that the model projections are entirely accu-
rate, while a non-zero PBIAS suggests the presence of bias in the predictions. Positive 
PBIAS values imply an overestimation of the variables, whereas negative values indi-
cate underestimation. Thus, PBIAS helps visualize both the direction and magnitude 
of the bias present in the model projections (Eq. 9.2). 

PBIAS =

∑n 
i=1(yi − ŷi)
∑n 

i=1 yi 
∗ 100 (9.2) 

where 

ŷi = i-th simulated value (µg/L) 
yi = i-th observed value (µg/L). 

Mean Absolute Percent Error (MAPE): This statistic calculates the absolute 
percent difference between the estimated and observed values, then averages these 
percent differences. Expressed as a percentage, MAPE provides a relative measure 
of the model’s accuracy in relation to the observed values. A lower MAPE indicates 
higher prediction accuracy (Eq. 9.3). 

MAPE =

∑n 
i=1

(

|yi−ŷi | 

yi

)

n
∗ 100 (9.3) 

where 

ŷi = i-th simulated value (µg/L) 
yi = i-th observed value (µg/L) 
n = total number of observations. 

9.3 Results and Discussion 

9.3.1 In Situ Chlorophyll-a Trends 

Chlorophyll-a concentration (µg/L) ranged from 0.05 to 0.90 µg/L, depending 
on the season and date. During the dry season (October to March), chlorophyll-a 
reaches its lowest concentrations in almost all stations, except for EN1 and PO1, 
with minimum values recorded at PV2 and PO2. In contrast, during the wet season 
(April to September), the concentration of chlorophyll-a increases, with maximum 
values recorded at PV1 and PO2. 

From the data, it can be deduced that FR1 exhibits high seasonal variability in 
chlorophyll-a concentration, while EN1 and FR2 shows an inverse trend compared
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Fig. 9.3 Seasonal trends of Chlorophyll-a concentration (µg/L) at the eight DGA in situ monitoring 
stations for wet season (April to September) and dry season (October to March) 

to the other stations, with minimum values in winter and maximum values in summer 
(Fig. 9.3). 

Additionally, stations FR2 and FR1 have the lowest median values, meaning 
that half of the records correspond to minimum chlorophyll-a concentrations. The 
remaining stations tend to have higher median values in their coastal counterparts 
compared to the inland ones (Fig. 9.4).

9.3.1.1 Correlation and Algorithm Selection 

The extensive surface area of Lake Llanquihue contributes to high spatial variability 
in chlorophyll-a concentrations and, more generally, in any other water quality param-
eters. Consequently, identifying algorithms for parameter estimation becomes chal-
lenging. The correlation between algorithms and stations varies depending on the 
atmospheric correction method used. When images are corrected using the Sen2Cor 
methodology, most algorithms and stations exhibit reduced correlation efficiency, 
with effective correlations observed only in PO1, PO2, and FR2 (Table 9.3).

Similarly, the use of the C2X-COMPLEX-Nets methodology results in low 
correlation efficiency across most algorithms and stations (Table 9.4).
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Fig. 9.4 Box-and-whisker plot for chlorophyll-a concentration (µg/L) at the eight DGA in situ 
monitoring stations

Table 9.3 Correlation matrix between chlorophyll-a estimation algorithms and the monitoring 
stations of Lake Llanquihue using the Sen2Cor atmospheric correction methodology 

Band/Band combinations PV1 PV2 PO1 PO2 FR1 FR2 EN1 EN2 

B2 0.10 − 0.21 − 0.04 − 0.51 0.33 − 0.44 0.01 0.02 

B3 0.10 − 0.22 0.03 − 0.54 0.33 − 0.44 0.02 0.03 

B4 0.10 − 0.24 0.14 − 0.57 0.35 − 0.45 0.05 0.06 

B8 0.11 − 0.25 0.16 − 0.59 0.34 − 0.47 0.06 0.07 

B2/B3 − 0.01 0.38 − 0.65 0.52 − 0.10 0.56 − 0.05 0.11 

B2/B4 0.05 0.39 − 0.61 0.48 − 0.08 0.61 − 0.09 0.12 

B2/B8 0.05 0.41 − 0.50 0.51 − 0.06 0.63 − 0.12 0.06 

B3/B8 0.07 0.42 − 0.53 0.52 − 0.04 0.52 − 0.19 − 0.10 

B4/B8 − 0.02 − 0.05 − 0.30 0.08 0.01 − 0.03 − 0.33 − 0.33 

NDVI 0.00 0.04 0.34 − 0.07 − 0.02 0.01 0.35 0.35 

GNDVI − 0.08 − 0.37 0.67 − 0.49 0.02 − 0.34 0.38 0.26 

GCI − 0.10 − 0.29 0.71 − 0.38 − 0.05 − 0.17 0.47 0.32
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Table 9.4 Correlation matrix between chlorophyll-a estimation algorithms and the monitoring 
stations of Lake Llanquihue using the C2X-COMPLEX-Nets atmospheric correction methodology 

Band/Band combinations PV1 PV2 PO1 PO2 FR1 FR2 EN1 EN2 

B1 0.17 0.46 0.81 0.12 0.39 − 0.26 0.36 − 0.15 

B2 0.18 0.48 0.65 0.08 0.43 − 0.24 0.36 − 0.19 

B3 0.12 0.52 0.07 − 0.29 0.46 0.01 0.08 − 0.21 

B4 − 0.22 0.21 − 0.01 − 0.56 − 0.10 0.33 − 0.10 − 0.15 

B5 − 0.22 0.04 − 0.01 − 0.54 − 0.24 0.39 − 0.08 − 0.10 

B6 − 0.22 − 0.01 − 0.02 − 0.39 − 0.30 0.44 − 0.07 − 0.01 

B1/B2 0.10 0.06 0.89 0.14 − 0.44 − 0.03 0.19 − 0.04 

B1/B3 − 0.01 0.01 0.69 0.39 − 0.48 − 0.07 0.31 0.00 

B1/B4 − 0.04 − 0.01 0.52 0.46 − 0.07 − 0.06 0.29 0.28 

B1/B5 − 0.06 0.01 0.47 0.49 − 0.06 − 0.03 0.25 0.29 

B1/B6 − 0.06 0.04 0.45 0.51 − 0.05 − 0.02 0.21 0.29 

B2/B3 − 0.02 − 0.05 0.60 0.44 − 0.39 − 0.08 0.35 − 0.01 

B2/B4 − 0.03 − 0.05 0.43 0.47 − 0.06 − 0.07 0.31 0.25 

B2/B5 − 0.04 − 0.03 0.39 0.50 − 0.05 − 0.04 0.26 0.26 

B2/B6 − 0.05 0.01 0.36 0.53 − 0.04 − 0.03 0.22 0.26 

B3/B4 0.11 − 0.04 0.20 0.50 0.08 − 0.25 0.23 0.21 

B3/B5 0.08 − 0.02 0.18 0.55 0.07 − 0.21 0.20 0.22 

B3/B6 0.06 0.03 0.18 0.59 0.06 − 0.19 0.17 0.21 

B4/B5 0.17 0.11 0.12 0.53 0.25 − 0.31 0.06 0.07 

B4/B6 0.17 0.17 0.13 0.60 0.23 − 0.32 0.06 0.10 

B5/B6 0.20 0.18 0.15 0.50 0.28 − 0.40 0.06 0.04 

In contrast, the Acolite method yields the most efficient correlations for the largest 
number of stations, particularly between bands 4 and 5, achieving the highest corre-
lations in stations PV2, PO1, PO2, FR1, and FR2. However, in stations PV1, EN1, 
and EN2, the correlations reach lower absolute values (Table 9.5).

Based on the results obtained, it is evident that the Acolite atmospheric correction 
methodology, combined with the B4/B5 algorithm, achieves the most efficient corre-
lations for stations PV2, PO1, PO2, FR1, and FR2 (|correlation| > 0.5). Nevertheless, 
it does not yield efficient values for the remaining stations (|correlation| < 0.5). 

9.3.2 Estimation Model 

The model estimates of chlorophyll-a over the entire lake surface (Eq. 9.4) were  
obtained using the Acolite atmospheric correction and the B4/B5 algorithm at the 
stations PV2, PO1, PO2, FR1, and FR2. Stations PV1, EN1, and EN2 were not
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Table 9.5 Correlation matrix between chlorophyll-a estimation algorithms and the monitoring 
stations of Lake Llanquihue using the Acolite atmospheric correction methodology 

Band/Band 
combination 

PV1 PV2 PO1 PO2 FR1 FR2 EN1 EN2 

B1 0.26 0.41 − 0.04 0.26 − 0.43 − 0.45 0.20 0.12 

B2 0.23 0.39 − 0.12 0.26 − 0.10 − 0.21 0.13 0.04 

B3 0.14 0.26 − 0.59 0.17 − 0.04 − 0.01 0.07 − 0.10 

B4 0.07 0.22 − 0.84 0.10 − 0.19 0.09 0.01 − 0.08 

B5 0.13 0.35 − 0.70 0.19 − 0.13 0.28 − 0.01 − 0.20 

B6 0.14 0.34 − 0.58 0.11 0.06 0.39 0.00 − 0.19 

B7 0.17 0.22 − 0.38 0.08 0.04 0.30 0.03 − 0.09 

B8 0.17 0.25 − 0.47 0.13 0.25 0.35 0.02 − 0.11 

B9 0.01 0.13 − 0.44 0.00 0.07 0.28 0.32 − 0.33 

B10 0.03 0.01 − 0.90 − 0.23 − 0.21 0.03 − 0.02 − 0.24 

B11 0.14 0.02 − 0.80 − 0.20 − 0.03 0.10 0.01 − 0.31 

B1/B2 0.13 0.18 0.15 0.01 − 0.52 − 0.71 − 0.04 0.07 

B1/B3 0.25 0.02 0.52 − 0.05 − 0.30 − 0.29 0.00 0.28 

B1/B4 − 0.08 − 0.29 0.66 − 0.18 − 0.14 − 0.28 − 0.10 − 0.06 

B1/B5 − 0.12 − 0.38 0.51 − 0.35 − 0.19 − 0.39 0.13 0.20 

B1/B6 − 0.08 − 0.40 0.59 − 0.23 − 0.37 − 0.49 0.34 0.25 

B1/B7 − 0.07 − 0.21 0.42 − 0.25 − 0.34 − 0.42 0.18 0.05 

B1/B8 − 0.10 − 0.32 0.50 − 0.24 − 0.54 − 0.44 0.18 0.03 

B1/B9 0.03 − 0.14 0.46 − 0.23 − 0.37 − 0.42 − 0.23 0.51 

B1/B10 − 0.14 − 0.04 0.67 0.54 0.13 − 0.34 − 0.10 − 0.29 

B1/B11 − 0.22 0.06 0.53 0.54 − 0.26 − 0.28 − 0.16 0.13 

B2/B3 0.30 − 0.06 0.71 − 0.05 − 0.07 − 0.15 0.08 0.43 

B2/B4 − 0.08 − 0.33 0.75 − 0.18 − 0.06 − 0.25 − 0.05 − 0.01 

B2/B5 − 0.14 − 0.42 0.57 − 0.37 − 0.11 − 0.37 0.22 0.21 

B2/B6 − 0.12 − 0.44 0.57 − 0.25 − 0.25 − 0.46 0.41 0.25 

B2/B7 − 0.12 − 0.26 0.40 − 0.27 − 0.20 − 0.40 0.25 0.09 

B2/B8 − 0.14 − 0.37 0.49 − 0.27 − 0.49 − 0.42 0.21 0.06 

B2/B9 0.01 − 0.18 0.44 − 0.23 − 0.27 − 0.40 − 0.21 0.53 

B2/B10 − 0.16 − 0.06 0.70 0.55 0.22 − 0.33 − 0.04 − 0.27 

B2/B11 − 0.22 0.06 0.52 0.54 − 0.18 − 0.27 − 0.16 0.13 

B3/B4 − 0.13 − 0.37 0.56 − 0.17 − 0.02 − 0.28 − 0.07 − 0.11 

B3/B5 − 0.21 − 0.48 0.36 − 0.41 − 0.08 − 0.44 0.21 0.13 

B3/B6 − 0.21 − 0.49 0.36 − 0.24 − 0.25 − 0.46 0.36 0.12 

B3/B7 − 0.21 − 0.27 0.22 − 0.26 − 0.19 − 0.42 0.17 − 0.04 

B3/B8 − 0.21 − 0.39 0.23 − 0.29 − 0.53 − 0.45 0.13 − 0.09

(continued)
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Table 9.5 (continued)

Band/Band
combination

PV1 PV2 PO1 PO2 FR1 FR2 EN1 EN2

B3/B9 − 0.03 − 0.17 0.31 − 0.20 − 0.26 − 0.40 − 0.21 0.44 

B3/B10 − 0.18 − 0.05 0.63 0.56 0.29 − 0.34 − 0.02 − 0.28 

B3/B11 − 0.22 0.05 0.47 0.56 − 0.17 − 0.27 − 0.20 0.10 

B4/B5 − 0.24 − 0.59 − 0.60 − 0.51 − 0.50 − 0.79 0.37 0.39 

B4/B6 − 0.07 − 0.28 − 0.12 0.08 − 0.32 − 0.47 0.23 0.28 

B4/B7 − 0.05 0.07 − 0.32 0.08 − 0.28 − 0.53 0.06 0.05 

B4/B8 − 0.09 − 0.09 − 0.58 0.02 − 0.42 − 0.45 0.09 0.12 

B4/B9 0.11 0.10 0.03 0.03 − 0.34 − 0.43 − 0.15 0.52 

B4/B10 − 0.11 0.06 0.73 0.63 0.41 − 0.33 0.10 − 0.31 

B4/B11 − 0.20 0.05 0.48 0.70 − 0.29 − 0.29 − 0.11 0.15 

B5/B6 0.04 0.04 0.16 0.36 − 0.25 − 0.21 0.08 − 0.11 

B5/B7 0.02 0.31 − 0.17 0.32 − 0.20 − 0.20 − 0.15 − 0.35 

B5/B8 − 0.01 0.24 − 0.37 0.44 − 0.39 − 0.15 − 0.17 − 0.45 

B5/B9 0.15 0.28 0.16 0.21 − 0.28 − 0.26 − 0.31 0.35 

B5/B10 − 0.07 0.15 0.84 0.63 0.44 − 0.27 − 0.11 − 0.36 

B5/B11 − 0.21 0.09 0.53 0.70 − 0.21 − 0.24 − 0.16 0.05 

B6/B7 − 0.02 0.36 − 0.61 0.07 0.29 0.04 − 0.56 − 0.30 

B6/B8 − 0.06 0.45 − 0.86 0.07 − 0.91 0.02 − 0.45 − 0.54 

B6/B9 0.19 0.25 0.11 − 0.03 − 0.19 − 0.19 − 0.46 0.40 

B6/B10 − 0.09 0.18 0.73 0.59 0.35 − 0.22 − 0.20 − 0.31 

B6/B11 − 0.20 0.13 0.57 0.61 − 0.01 − 0.24 − 0.26 0.07 

B7/B8 − 0.06 − 0.23 − 0.04 − 0.06 − 0.91 − 0.04 0.05 0.02 

B7/B9 0.29 0.00 0.55 − 0.05 − 0.29 − 0.28 − 0.39 0.62 

B7/B10 − 0.07 0.08 0.84 0.58 0.30 − 0.25 − 0.13 − 0.32 

B7/B11 − 0.19 0.12 0.65 0.61 − 0.05 − 0.25 − 0.21 0.13 

B8/B9 0.28 0.17 0.37 − 0.02 0.68 − 0.23 − 0.26 0.59 

B8/B10 − 0.07 0.14 0.81 0.59 0.44 − 0.25 − 0.10 − 0.26 

B8/B11 − 0.21 0.13 0.58 0.63 0.17 − 0.24 − 0.17 0.13 

B9/B10 − 0.16 0.06 0.68 0.55 0.33 − 0.20 0.36 − 0.33 

B9/B11 − 0.21 0.09 0.68 0.28 0.03 − 0.26 0.25 0.00 

B10/B11 − 0.25 0.06 0.19 − 0.21 − 0.55 − 0.88 − 0.20 − 0.44 

NDVI 0.12 0.06 0.57 0.01 0.38 0.42 − 0.15 − 0.11 

GNDVI 0.25 0.36 − 0.16 0.21 0.49 0.45 − 0.14 0.05 

GCI 0.27 0.34 − 0.12 0.17 0.46 0.45 − 0.12 0.03
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Fig. 9.5 Regression plot for the estimation of chlorophyll-a concentration (µg/L) from the B4/ 
B5 algorithm for the total surface of Lake Llanquihue using the Acolite atmospheric correction 
methodology 

considered in the analysis due to their low correlation. The model shows an inverse 
relationship between the algorithm and the variable, achieving a regression coefficient 
R2 of 0.325. Thus, more information is needed to identify additional algorithms that 
maximize the efficiency of the regression (Fig. 9.5). 

Ch
(

µ 
g 

L

)

= 0.8284 − 0.638 ∗ 
B4 

B5 
(9.4) 

In the validation period, the observed and estimated chlorophyll-a concentrations 
differ by a maximum of 0.1 (µg/L), where the simulated results tend to reach lower 
values than the observed ones, except for the day 16–12–2020 where the observed 
concentrations reached lower values (Fig. 9.6). The model efficiency reaches an 
RMSE value of 0.080 (µg/L) and BIAS and MAPE percentages of 9.6% and 25.2% 
respectively. Considering the magnitude of Lake Llanquihue, a BIAS and MAPE 
percentage variation of less than 10% reflects the potential of using remote sensors, 
specifically the Sentinel 2 satellite for the estimation of chlorophyll-a concentrations.

Finally, based on the results obtained above, the spatial variability of chlorophyll-
a concentration in Lake Llanquihue is presented for both a summer image (07– 
02–2021) and a winter image (17–06–2021) (Fig. 9.7). The highest concentra-
tions are observed near the urban centers for both images, however, in winter the 
concentrations are higher.
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Fig. 9.6 Observed (blue) and simulated (red) Chlorophyll-a concentration for the model in 
validation period in Llanquihue Lake

Fig. 9.7 Spatial distribution of Chlorophyll-a concentrations (µg/L) from the B4/B5 algorithm 
and the Acolite atmospheric correction for the total surface of Lake Llanquihue in a summer 
(07–02–2021) and b winter (17–06–2021)
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9.4 Conclusion 

Satellite information is a vital and handy tool for estimating water quality parameters. 
Lake Llanquihue allows estimates of chlorophyll-a concentrations (µg/L). 

• The Acolite atmospheric correction method achieves more efficient Chlorophyll-a 
concentrations (µg/L) estimates than the Sen2Cor and C2X methods. This reflects 
the importance of selecting the most appropriate atmospheric correction method 
depending on the objectives sought, and it is not prudent to claim that one method 
can be the most useful for all scenarios. 

• Bands 4 and band 5, corresponding to the red (665 µm length) and near-infrared 
(704 µm length) bands, allow the most efficient estimations for the parameter of 
interest in Lake Llanquihue; this combination of bands is based on the absorption 
of chlorophyll-a and water and allows identifying the type, health, and structure 
of the vegetation. 

• The rest of the algorithms vary in their estimation efficiency. However, this vari-
ability is due to the extensive and heterogeneous surface that covers the water 
body. However, other algorithms may be practical depending on the lake and the 
homogeneity of its surface area. However, the model’s efficiency is reduced due 
to the low spatial representativeness of the monitoring stations and the number 
of satellite images used, so it is necessary to increase the number of measure-
ments and satellite images to optimize the model and minimize the values of the 
efficiency statistics. 

The model is beneficial as a first approximation of this methodology applied 
to a large lake such as Lake Llanquihue. They demonstrated the high potential of 
satellite information as a tool for the characterization of the trophic state of a water 
body from the estimation of parameters such as Chlorophyll-a. This methodology 
can be extended to more parameters such as turbidity, suspended solids, and water 
transparency, allowing a comprehensive view of the surface water quality of the water 
body under study. 
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Chapter 10 

Geospatial and Hydrogeochemical 
Insights for Monitoring Water Quality 

and Salinity in Coastal Regions 
of Southern Karnataka, India 

Vijay Suryawanshi, H. Ramesh, and T. Nasar 

Abstract Coastal areas face significant challenges due to the depletion of ground-

water and seawater intrusion into freshwater aquifers. Additionally, insufficient 

monitoring of freshwater quality is a major concern for consumers. In Karnataka’s 

Dakshina Kannada district, groundwater is crucial for meeting the needs of the 

community, industry, and agriculture. This study investigates the impact of exces-

sive use, human activities, and agricultural chemicals on groundwater quality, with 

a focus on the hydrogeochemistry of the Natravathi and Gurapura catchments. The 

study analyzed 32 groundwater samples collected seasonally from 2021 to 2022 

for 18 physiochemical parameters. The Water Quality Index (WQI) was determined 

using factors such as pH, Dissolved Solids, Oxidatio Reduction Potentisl, Electrical 

Conductivity, Total Hardness, Total Dissolved Solids, Calcium, Chlorides, Potas-

sium, and Sodium. WQI scores ranged from 0 to 52 post-monsoon and 0 to 42 pre-

monsoon. An ArcGIS-based spatial distribution map was created to show temporal 

changes in groundwater quality. Post monsoon measurements showed significant 

cations ranging from 4.25 to 64.54 mg/l, calcium from 40 to 520 mg/l, chloride from 

40 to 200 mg/l, and potassium from − 8.05 to 15.44 mg/l. Pre-monsoon measure-

ments indicated sodium levels from 28 to 208 mg/l, calcium from 240 to 840 mg/l, 

chloride from 19.99 to 159.9 mg/l, and potassium from 0 to 61.79 mg/l. WQI results 

for the post-monsoon season showed 36% of sampling sites as excellent, 52% good, 

8% poor, and 4% very poor, while pre-monsoon results indicated 13% excellent, 46% 

good, and 42% poor. The research reveals higher toxin concentrations in drinking 

water during pre monsoon period compared to post monsoon, with increased salinity 

in freshwater aquifers making the water unsuitable for consumption. 
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10.1 Introduction 

For thousands of years, groundwater has been a crucial source of drinking water. 

However, global groundwater reserves are now approaching their limits, with some 

regions in the world already overexploited. The potential for further groundwater 

development worldwide is minimal. As a result, tapping into these resources may 

not be economically viable and could harm the environment (Liu et al. 2013). With 

97% of the freshwater on Earth, groundwater is a vital resource for both house-

hold consumption and industry. But over-extraction and pollution create serious 

hazards, which emphasizes the need of sustainable development methods (Odukoya 

2015). Groundwater, which is derived from precipitation, is a constantly evolving 

and profound component of the Earth’s natural water cycle. Globally, it is a signif-

icant and invaluable sustainable asset that supports human survival and economic 

advancement (Sivakumar et al., 2023; Tiwari et al., 2017). 

Groundwater deterioration and quality, such as all physicochemical parameters, 

heavy metals, harmful substances, and all significant ions, is a global concern (Singh 

and Noori 2022) It is found in aquifers, which are geologic formations with perme-

able structures capable of storing and conveying water at rates sufficient to supply 

significant quantities to well (Karunanidhi et al. 2021). Many anthropogenic factors, 

particularly industry, excessive fertilizers, population growth, and agricultural pesti-

cides, rapidly pollute groundwater resources (Arslan & Çolak, 2023; Hinge et al., 

2022). The Water Quality Index (WQI) generally combines various parameters like 

pH, total dissolved solids, and dissolved oxygen to produce a single value repre-

senting water quality. In river basin assessments, for instance, a WQI score under 50 

might suggest clean water, whereas scores exceeding 100 could indicate contamina-

tion (Brown et al. 1970). Water’s chemical and physical properties fluctuate tempo-

rally and spatially due to natural events, human interference, and saltwater intrusion. 

In coastal regions, the combination of seawater intrusion and agricultural and indus-

trial activities significantly impacts groundwater quality changes (Uddin et al. 2021). 

The Mangalore delta has experienced increased groundwater salinity attributed to 

seawater intrusion and intensive farming. These issues underscore the importance of 

developing reliable WQI models specifically for coastal ecosystems. (Pradesh et al. 

2011) emphasized the importance of WQI in water resource management and moni-

toring by observing shifts in water quality patterns. Similarly, (Kanagaraj et al. 2018) 

stressed the influence of human and natural factors, such as agricultural drainage and 

biogeochemical processes, in intensifying groundwater salinity. The water quality 

index score will be determined through the analysis of various physicochemical 

parameters. These include Total Dissolved Solids, pH, Oxidation–Reduction Poten-

tial, Dissolved Oxygen, Electrical Conductivity, Salinity, and Temperature. Addition-

ally, the assessment will encompass Magnesium, Calcium, Total Hardness, Chlo-

rides, Potassium, Sodium, Sulphate, Carbonates, and Bicarbonates (Gunes 2023). 

Although certain regions receive substantial precipitation from July to September, 

they still encounter shortages of potable water. In contrast, other areas suffer from 

excessive rainfall, resulting in floods (Sitharam et al. 2017). For example, during
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the monsoon season, surplus water in flood-prone regions often goes unused due 

to insufficient infrastructure. On the other hand, dry areas experience severe short-

ages in the non-rainy months because of uneven distribution and increasing water 

demands from urban growth and agricultural activities (Parthasarathy et al. 2019). 

Coastal reservoirs present a promising approach to store flood waters for use 

throughout the year, addressing both flooding issues and water scarcity. The Marina 

Barrage in Singapore exemplifies the efficacy of coastal reservoirs in water resource 

management and prevention of seawater intrusion (Yang et al. 2013). In areas with 

plentiful water resources, contamination from agricultural runoff, industrial waste, 

and untreated sewage makes water unsafe for consumption, further exacerbating 

water scarcity (Sitharam et al. 2019). The pollution of the Yamuna River serves 

as an example, significantly restricting its use for drinking and irrigation purposes. 

(Kolathayar et al. 2018) emphasized the difficulties in managing seasonal fluctuations 

in water supply and their effects on drinking and irrigation needs. Likewise, (Yang 

2013) highlighted the dual concerns of water scarcity and quality, highlighting the 

necessity for innovative solutions such as coastal reservoirs, which (Yang and Lin 

2012) suggested as an effective method for storing flood waters near river mouths. 

10.2 Materials and Methods 

10.2.1 Description of the Study Area 

The Natravathi River (Fig. 10.1), a significant westward-flowing waterway in 

Karnataka State’s Dakshina Kannada district, spanning latitude 12° 29′ 11′′ to 13° 11′

11′′ N and longitudes 74° 49′ 08′′ to 75° 47′ 53′′ E (Suryawanshi et al. 2024b). This 

river serves multiple purposes throughout the year, including irrigation, supplying 

drinking water to over 0.6 million people, supporting petrochemical industries in 

Mangalore city, and fulfilling religious needs in locations such as Dharmasthala 

and Kukke Subramanya (Babar and Ramesh 2015). The Natravathi River begins its 

journey in the Western Ghats, specifically in the Bangrabalige valley of Chikkama-

galuru district, at an elevation of 1000 m above MSL. This river system encompasses 

a catchment area of 3657 km2 (Suryawanshi et al. 2024a). In the west, it flows for 

about 125 km before meeting the Arabian Sea at Mangalore. The geology of the area 

is made up of lateritic earth covered in gneiss (CGWB 2012).

On average, the catchment experiences 4030 mm of annual rainfall, with tempera-

tures fluctuating between 16° and 42° C. The area’s geological composition consists 

of an early Precambrian tonalitic gneisses foundation, which has been infiltrated by 

granites, granulite’s, and dolerite dykes (Shankar and Manjunatha 1994). The older 

gneissic rocks have been encroached upon by granulite’s and granites (Ravindra and 

Venkat Reddy 2011). Although the Gurpur River originates at a higher elevation, 

the Natravathi River exhibits a steeper overall elevation profile in relation to its total 

length (Kumar et al. 2010). The Natravathi River’s catchment is monitored by a river
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Fig. 10.1 Location map of the study area with monitoring well

gauging station at Bantwal, while the Gurpur River’s catchment is observed by two 

gauging stations located at Addoor and Polali. These monitoring facilities are oper-

ated by the Central Water Commission of the Government of India and the Public 

Works Department of the Government of Karnataka (Sharannya et al. 2020). 

10.2.2 Groundwater Sample Monitoring 

Researchers monitored 32 groundwater samples from the Natravathi and Gurpur 

catchment regions. Laboratory analysis was conducted on various physical and chem-

ical parameters, including Mg, Cl, TH, chlorides Cl, K, Na, SO4, CO3, and HCO3. The  

findings were then evaluated against WHO 2004 and BIS 2012 standards. The Water 

Quality Index (WQI), developed by Horton (1965) in the United States, incorpo-

rates ten key water quality indicators such as dissolved oxygen (DO), pH, coliforms, 

specific conductance, alkalinity, and chloride. This index has gained widespread 

acceptance in the scientific community (Tyagi et al. 2013; Uddin et al. 2021). The 

WQI is computed by considering multiple parameters and assessing their overall 

significance based on the water’s intended use. Examining the hydro geochemistry 

of a groundwater source is essential for determining its quality. This analysis can be 

employed to investigate the hydrogeochemical processes responsible for variations 

in groundwater chemistry across time and space (Curry and Stiff 2021).
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10.2.3 Quantitative Assessment of Water Quality Using WQI 

The Water Quality Index assesses the combined impact of key physical and chem-

ical factors on water quality. Developed by the National Sanitation Foundation in 

1970, the WQI employs a mathematical equation to deliver a standardized and easily 

comprehensible measure of water quality (Brown et al. 1973). This index builds on 

Horton’s previous work by allocating weights to each parameter based on its impor-

tance to overall water quality (Brown et al. 1970), conducted an extensive analysis 

of the Horton index in 1970, enhancing it to create an improved WQI model (Eti 

et al. 2024). This enhancement allowed the index to better adapt to various water 

quality behaviors identified through physicochemical studies. The WQI methodology 

involves evaluating essential water quality parameters against the BIS 2012 stan-

dards, ensuring compliance with national quality criteria. Utilizing formulas (10.1, 

10.2 and 10.3 and 10.4), Researchers computed the relative weight (Wi) and quality 

rating scale (qi) for each parameter. This method facilitates a systematic assessment 

of water quality and highlights areas requiring enhancement. 

Calculation of Unit Weight (Wn) factors for each parameter: 

Wn = 
K 

Sn 
(10.1) 

where 

K =

[

1 
1 
S1 

+ 
1 
S2 

+ 
1 
S3 

+ . . .  + 
1 
Sn

]

=
1

∑

1 
Sn 

(10.2) 

Sn = Standard Desirable Value of the nth Parameter. 

On summation of all selected parameter unit weight factors, Ws = 1 (Unity). 

Calculate the sub-Index (Qn) Value by using the formula 

Qn = 
[(Vn − Vo)] 

[(Sn − Vo)] 
∗100 (10.3) 

where 

Vn = Mean Concentration of the nth Parameter 

Sn = Standard desirable value of the nth Parameter. 

VO = Actual Value of the parameter in pure water (generally VO = 0, for most 

parameter except pH) 

Combining step-1 and Step-2, WQI is calculated as fallow 

Overall WQI =

[
∑

Wn∗Qn
∑

Wn

]

(10.4)
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The process of evaluating groundwater quality by integrating spatial and non-

spatial data is depicted in the flowchart presented in Fig. 10.2. Specifically, the 

Spatial Data component involves digitizing the study area using ArcGIS, creating 

a study location map, and developing spatial distribution maps of different water 

parameters. On the other hand, the Non-Spatial Data component involves collecting 

well locations using GPS and conducting groundwater quality tests on site, with a 

focus on physical, chemical, and biological parameters. The results of these tests 

are then used for Water Quality Index Assessment, which is compared to BIS and 

WHO standards to evaluate groundwater quality. Ultimately, this integrated approach 

leads to the creation of a comprehensive Water Quality Index Map that visualizes 

groundwater quality in the study area. 

Fig. 10.2 Flow chart of the methodology
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10.3 Analysis and Interpretation of Results 

This study aims to assess the physicochemical parameters of groundwater to evaluate 

its suitability for drinking and other purposes in the study area as per APHA (2012). 

Groundwater quality standards vary depending on its intended use, with drinking 

water requiring the most stringent criteria. The World Health Organization (2017) 

and BIS Standards (IS:10500–2012) outline comprehensive criteria for assessing 

drinking water quality, including parameters such as pH, TDS, and microbial contam-

ination. Figures 10.3 and 10.4, groundwater levels in the study area range from 0.4 

to 12.2 m, with an increase observed during the post-monsoon season, indicating 

significant recharge. The pH levels range from 6 to 8.5, with a peak value of 7.81 in 

the coastal belt and a low of 5.5 upstream. Anthropogenic activities, such as agricul-

tural runoff, industrial discharge, and over-extraction, have led to localized changes 

in groundwater quality, particularly affecting shallow aquifers with increased nitrate 

and chloride levels. An area with a high oxidation–reduction potential score, such 

as a lake, river, or well, has an abundance of oxygen and can effectively eliminate 

pollutants and decomposing organisms from the surrounding environment. There 

is a direct relationship between atmospheric pressure and the amounts of dissolved 

oxygen in water. The dissolved oxygen concentrations in the research area range 

from 1.3 to 4.6 mg/l. The World Health Organization states that water should have a 

minimum concentration of 4 mg/l of dissolved oxygen to sustain a healthy aquatic 

environment.

In this study area, the total dissolved solids value varies from 29 to 590 mg/l, 

suggesting that most groundwater samples fall within the permissible limit. High 

TDS concentrations in groundwater samples are caused by salt leaching from the 

soil, and domestic sewage may seep into the groundwater. The main contributors to 

hard water in a solution are calcium and, to a lesser extent, magnesium. Figure 10.4i 

displays Total Hardness between 80 and 720 during the post-monsoon season, while 

Fig. 10.3i displays Total Hardness as CaCO3 ranges between 40 and 360 CaCO3. 

10.3.1 Multivariate Statistical Analysis 

Multivariate statistical analysis offers a convenient and effective approach for exam-

ining large environmental datasets, particularly by reducing dimensionality and 

addressing skewness (Ghaemi and Noshadi 2022; Sharma et al. 2020). Techniques 

such as Principal Component Analysis (PCA) and Cluster Analysis (CA) were 

employed to identify dominant features impacting groundwater quality and to group 

sampling locations based on water quality characteristics (Nath et al. 2021; Mishra  

and Lal 2023). These methods enhance understanding by revealing patterns and 

correlations that are not immediately evident. The analysis utilized WHO (2004) and 

BIS (2012) standards, as they provide comprehensive guidelines for safe drinking
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water quality, addressing key chemical and physical parameters critical for public 

health. 

Box and whisker plots revealed significant seasonal variability in hydrogeochem-

ical parameters (Hema and Subramani 2013), with notable trends in salinity, TDS 

levels, and pH during the pre- and post-monsoon seasons (Fig. 10.5a, b). These 

variations highlight the influence of recharge events and anthropogenic activities 

on groundwater quality. Table 10.1 provides descriptive statistics for the analyzed 

water quality parameters, including mean, standard deviation, and permissible limits. 

Table 10.2a, b highlights the correlation coefficients, identifying strong associations 

between Water Quality Index (WQI) and specific metrics such as TDS and salinity 

levels. Figures 10.5a, b show the coastal region’s hydrogeochemical characteristics, 

seasonal distribution, and variability in the study area.

10.3.2 Pearson’s Correlation Coefficient Matrix 

The Pearson’s correlation coefficient is computed as the covariance of two vari-

ables divided by the product of their standard deviations. To assess the relationships 

between hydrogeochemical parameters and identify potential groundwater contami-

nation sources during pre-monsoon and post-monsoon seasons, researchers employ a 

Pearson’s correlation coefficient matrix (Bhuiyan et al. 2016). The coefficient values 

range from − 1 to  + 1, with − 1 indicating a complete negative correlation, 0 signi-

fying no correlation, and + 1 representing a perfect positive correlation (Shil et al. 

2019). Analysis of the Pearson’s correlation matrix demonstrates notable connections 

between various elements, including calcium, magnesium, sulphate, potassium, EC, 

and TH, with TDS, Cl, and pH. 

10.3.3 Piper Plot for Hydrogeochemical Analysis 

The Piper diagram incorporates two triangular charts that display the relative propor-

tions of cations (such as Ca2+, Na+, Mg2+) and anions (like SO4 
2−, Cl−, HCO3

−) 

in water samples, featuring a common baseline for easy comparison (Piper 1944). 

This diagram employs a diamond-shaped layout for multiple analyses, with each 

sample depicted as a circle whose size correlates with the Total Dissolved Solids 

(TDS) concentration, offering a visual representation of both chemical makeup and 

salinity (Hwang et al. 2017). By examining a sample’s position on a Piper diagram, 

researchers can deduce the water’s source, including the effects of particular geolog-

ical formations or human activities. For instance, samples dominated by calcium and 

sulfate may indicate gypsum dissolution, while a predominance of sodium-chloride 

could suggest seawater intrusion. This technique enables scientists to track changes 

in water chemistry along a flow path, aiding in the identification of natural and 

human-induced influences (Sayyed et al. 2013).



10 Geospatial and Hydrogeochemical Insights for Monitoring Water … 201

a
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

b
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

G
W

L
 (

m
) p
H

 

O
R

P
 

D
O

 (
%

) 

D
O

(m
g

/l
) E

C
 

T
D

S
 

T
em

p
 (

C
°)

 

S
a

li
n

it
y

 M
g

 

C
l 

T
H

 

C
a
 

K
 

H
C

o
3
 

N
a
 

S
O

4
 

0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0

0
 

1
2

0
 

1
4

0
 

(P
o

st
-M

o
n

so
o

n
'2

1
) 

G
W

L
 (

m
) p
H

 

O
R

P
 

D
O

 (
%

) 

D
O

 (
m

g
/l

) E
C

 

T
D

S
 

T
em

p
 (

C
°)

 

S
a

li
n

it
y

 M
g

 

C
a
 

T
H

 

C
l 

N
a
 

K
 

H
C

O
3
 S

O
4
 

0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0
0
 

1
2
0
 

1
4
0
 

(P
re

-M
o

n
ss

o
n

'2
2

) 

F
ig
. 
1
0
.5
 
a
, 
b
 B
o
x
 a
n
d
 w
h
is
k
er
 p
lo
t 
re
p
re
se
n
ta
ti
o
n
 o
f 
k
ey
 w
at
er
 q
u
al
it
y
 p
ar
am

et
er
s



202 V. Suryawanshi et al.

T
a
b
le
 1
0
.1
 
G
ro
u
n
d
w
at
er
 q
u
al
it
y
 a
ss
es
sm

en
t:
 s
ta
ti
st
ic
al
 s
u
m
m
ar
y
 f
o
r 
p
o
st
-m

o
n
so
o
n
 2
0
2
1
 a
n
d
 p
re
-m

o
n
so
o
n
 2
0
2
2
 

S
l.
 

N
o
. 

P
ar
am

et
er
 
U
n
it

P
o
st
-m

o
n
so
o
n
’ 
2
1

P
re
-m

o
n
so
o
n
’ 
2
2

W
H
O
 (
2
0
0
4
)

B
IS
 S
td
. 
(2
0
1
2
) 

M
in

M
ax

M
ea
n

M
ed
ia
n
 
S
t.
 

D
ev
. 

M
in

M
ax

M
ea
n

M
ed
ia
n
 
S
t.
 

D
ev
. 

ac
ce
p
ta
b
le
 

li
m
it
 

P
er
m
is
si
b
le
 

li
m
it
 

A
cc
ep
ta
b
le
 

li
m
it
 

P
er
m
is
si
b
le
 

li
m
it
 

1
G
W
L

m
et
er

0
.8

1
2
.3

3
.4
5
 
2
.4
5

2
.5
5
 
0
.5

9
.7

5
5
.3
3

2
.7
6

–
–
 

2
p
H

p
H
-u
n
it

4
.8

7
.2

6
.1
4
 
6
.0
0
5

0
.6

4
.8
8

7
.5
5

6
.3
9

6
.4
3

0
.6
4

7
–
8
.5

9
.2

6
.5
–
8
.5

–
 

3
O
R
P

m
il
li
v
o
lt
s 

0
.9

2
0
.9

6
.5
5
 
6
.2
9

3
.9
 

−
 1
.3
 
2
6
.9

1
0
.5

1
0
.2

7
.9
1

−
 1
0
0

3
0
0

0
3
0
0
 

4
D
O

%
2
0
.2

1
0
3
.6

4
1
.7
5
 
3
9
.0
5

1
6
.8
9
 
3
.7

1
1

8
.0
7

8
.4

2
.1
6

–
–

8
0

1
2
0
 

5
D
O

m
g
/l

1
.5
7

8
.8
4

3
.2
5
 
2
.9
5
5

1
.4
2
 
0
.3
4

0
.8
6

0
.6
3

0
.1
5

1
5

6
.5

8
 

6
E
C

m
S
/c
m

2
6

6
8
4

1
8
4
.2
5
 
1
2
0
.5

1
7
1
.2

4
4

9
5
4

2
6
3
.1
2
 
2
1
6

2
1
2
.9
1
 
–

2
0
0

3
0
0

9
0
0
 

7
T
D
S

m
g
/l

1
3

3
0
8

8
2
.7
2
 
5
6
.5

7
2
.8
5
 
2
2

3
1
6

1
1
8
.1
9
 
1
0
8

7
9
.8
7

1
5
0
0

5
0
0

5
0
0

2
0
0
0
 

8
T
em

p
°C

2
6
.9
2
 
3
0
.0
9

2
8
.2
9
 
2
8
.0
8

0
.8
7
 
2
7
.0
6
 
3
2
.5
5
 
2
9
.5
2

2
9
.2
8

1
.2
9

1
0

2
0

1
0

2
0
 

9
S
al
in
it
y

p
p
m

0
1

0
.3
4
 
0

0
.4
8
 
0

1
0
.3
3

0
0
.4
8

0
.5

3
5

0
.5

3
0
 

1
0

M
g

C
aC

O
3
 

−
 

2
4
0
 

8
0

−
 6
1
.2
5
 

−
 4
0

9
7
.5
8
 

−
 

4
8
0
 

3
6
0
 

−
 

1
1
0
.3
 

−
 8
0

1
9
2
.3
6
 
5
0

1
5
0

3
0

1
0
0
 

1
1

C
a

C
aC

O
3

4
0

5
2
0

2
2
3
.1
3
 
2
0
0

1
2
2
.8
8
 
2
4
0

8
4
0

4
9
3
.8
5
 
4
8
0

1
6
5
.4
8
 
7
5

2
0
0

7
5

2
0
0
 

1
2

T
H

C
aC

O
3

4
0

3
6
0

1
6
1
.8
8
 
1
2
0

1
0
0
.7
5
 
8
0

7
2
0

3
5
3
.8
5
 
3
4
0

1
3
9
.8

1
0
0

5
0
0

2
0
0

6
0
0
 

1
3

C
l

m
g
/l

4
0

2
0
0

7
8
.1
3
 
6
0

3
4
.5
9
 
1
9
.9
9
 
1
5
9
.9
 
6
4
.5
9

5
9
.9
6

3
8
.4
7

2
0
0

6
0
0

7
5

1
0
0
0
 

1
4

K
m
g
/l

−
 

8
.0
5
 

1
5
.4
4

2
.8

2
.3
1

4
.8
6
 
0

6
1
.7
9
 
1
7
.4
1

1
3
.6
4

1
6
.9
6

–
1
2

1
2

–
 

1
6

H
C
O
3

m
g
/l

4
8

3
5
2

1
5
4
.7
2
 
1
3
8

8
4
.2
5
 
0

0
0

0
0

5
0
0

–
1
2
5

–
 

1
7

N
a

m
g
/l

4
.2
5

6
4
.5
4

2
1
.5
6
 
1
6
.9
6
5

1
3
.8
2
 
2
8

2
0
8

7
8
.0
9

6
0

4
6
.1

–
2
0
0

4
5

–
 

1
8

S
O
4

m
g
/l

0
.0
4
8
 
8
9
.7

9
.3
7
 
4
.6
5

1
5
.9

0
0
.1
7
2
 
0
.0
3

0
.0
1

0
.0
5

2
0
0

4
0
0

2
0
0

4
0
0



10 Geospatial and Hydrogeochemical Insights for Monitoring Water … 203

T
a
b
le
 1
0
.2
 
a
 W

at
er
 q
u
al
it
y
 p
ar
am

et
er
 c
o
rr
el
at
io
n
s—

p
o
st
-m

o
n
so
o
n
 2
0
2
1
 b
 W

at
er
 q
u
al
it
y
 p
ar
am

et
er
 c
o
rr
el
at
io
n
s—

p
re
-m

o
n
so
o
n
 2
2
 

M
g

sl
A
lk
al
in
it
y

p
H

E
C

T
D
S

C
a

T
H

T
em

p
K

N
a

D
O
 

%
 

D
O
 

m
g
/l
 

C
l

S
O
4
 

(a
) 

M
g

0
.2
4
 

S
al
in
it
y

0
.5
9
 

−
 0
.0
3
 

A
lk
al
in
it
y
 

−
 0
.1

0
.5
1

0
.2
1
 

p
H

−
 0
.2
1
 

−
 0
.2
1

0
.3
9

0
.4
1
 

E
C

−
 0
.1

0
.2
4

0
.4

0
.6
2

0
.5
7
 

T
D
S

−
 0
.2
6
 

−
 0
.3
1

0
.5
7

0
.4
2

0
.4
8

0
.7
9
 

C
a

−
 0
.1
2
 

−
 0
.6

0
.0
7

0
.4
3

0
.1
3

0
.4
3

0
.3
1
 

T
H

0
.0
9

0
.2
3

0
.0
5

0
.1
3
 

−
 0
.0
4

0
.2
9

0
.0
8

0
.6
4
 

T
em

p
−

 0
.1
5
 

−
 0
.1
7
 

−
 0
.0
1

0
.1
6

0
.1
6

0
.3
2

0
.2
7

0
.2
4

0
.1
3
 

K
0
.2
2
 

−
 0
.3
1
 

−
 0
.0
8

0
.3
3

0
.0
5

0
.4
7

0
.3
5

0
.6
3

0
.4
6

0
.2
2
 

N
a

0
.2
3
 

−
 0
.2
7
 

−
 0
.0
8

0
.2
9

0
.2
3

0
.5
8

0
.3
9

0
.3
8

0
.2

0
.3

0
.7
2
 

D
O
 %

0
.0
6
 

−
 0
.1
3
 

−
 0
.0
7

0
.1
3

0
.2
9

0
.3
4

0
.0
5

0
.1
9

0
.1
1

0
.3
9

0
.3
3

0
.5
7
 

D
O
 m

g
/

0
.0
3
 

−
 0
.1
5
 

−
 0
.0
9

0
.0
9

0
.2
7

0
.3
1

0
.0
4

0
.1
9

0
.0
9

0
.3
5

0
.3
3

0
.5
7

0
.9
9
 

C
l

−
 0
.1
4
 

−
 0
.0
8

0
.1
9

0
.4
9

0
.3
4

0
.6
7

0
.3
2

0
.2
4

0
.2
1

0
.2
9

0
.2
9

0
.3
5

0
.4
4

0
.4
1
 

S
O
4

0
.3
4

0
.1
1
 

−
 0
.1
7

0
.3
8

0
.1
9

0
.5
2

−
 0
.0
6

0
.2
1

0
.3
7

0
.1
9

0
.3
4

0
.5
3

0
.4
8

0
.4
3

0
.5
9
 

(b
) 

M
g

0
.2
4
 

S
al
in
it
y

−
 0
.0
3
 

−
 0
.3
9
 

A
lk
al
in
it
y
 

−
 0
.4
1

0
.2
1
 

−
 0
.1
 

p
H

−
 0
.2
1

0
.5
1

0
.4
1

0
.2
1

(c
o
n
ti
n
u
ed
)



204 V. Suryawanshi et al.

T
a
b
le
1
0
.2

(c
o
n
ti
n
u
ed
)

M
g

sl
A
lk
al
in
it
y

p
H

E
C

T
D
S

C
a

T
H

T
em

p
K

N
a

D
O

%

D
O

m
g
/l

C
l

S
O
4

E
C

−
 0
.2
4

0
.4

0
.6
2

0
.5
7
 

−
 0
.1
 

T
D
S

−
 0
.3
1

0
.5
7

0
.4
2

0
.4
8

0
.7
9

0
.2
6
 

C
a

−
 0
.6

0
.0
7

0
.4
3

0
.1
3

0
.4
3

0
.3
1

0
.1
2
 

T
H

0
.5
2

0
.0
5

0
.1
3

0
.0
4

0
.2
9

0
.0
8

0
.6
4

0
.0
9
 

T
em

p
−

 0
.1
7
 

−
 0
.0
1

0
.1
6

0
.1
6

0
.3
2

0
.2
7

0
.2
4

0
.1
3
 

−
 0
.1
5
 

K
−

 0
.3
1
 

−
 0
.0
8

0
.3
3

0
.0
5

0
.4
7

0
.3
5

0
.6
3

0
.4
6

0
.2
2

0
.2
2
 

N
a

−
 0
.2
7
 

−
 0
.0
8

0
.2
9

0
.2
3

0
.5
8

0
.3
9

0
.3
8

0
.2

0
.3

0
.7
2

0
.2
3
 

D
O
 %

−
 0
.1
3
 

−
 0
.0
7

0
.1
3

0
.2
9

0
.3
4

0
.0
5

0
.1
9

0
.1
1

0
.3
9

0
.3
3

0
.5
7

0
.0
6
 

D
O
 m

g
/l

−
 0
.1
5
 

−
 0
.0
9

0
.0
9

0
.2
7

0
.3
1

0
.0
4

0
.1
9

0
.0
9

0
.3
5

0
.3
3

0
.5
7

0
.9
9

0
.0
3
 

C
l

−
 0
.0
8

0
.1
9

0
.4
9

0
.3
4

0
.6
7

0
.3
2

0
.2
4

0
.2
1

0
.2
9

0
.2
9

0
.3
5

0
.4
4

0
.4
1

0
.1
4
 

S
O
4

0
.1
1
 

−
 0
.1
7

0
.3
8

0
.1
9

0
.5
2

0
.0
6

0
.2
1

0
.3
7

0
.1
9

0
.3
4

0
.5
3

0
.4
8

0
.4
3

0
.5
9

0
.3
4



10 Geospatial and Hydrogeochemical Insights for Monitoring Water … 205

Figure 10.6a, b demonstrate the practical application of this method, showing 

various water samples plotted within the triangular charts, with their relative positions 

reflecting the underlying geochemical processes. By contrasting the positions of these 

samples, it becomes possible to determine the contributions of both lithogenic and 

anthropogenic sources to the water’s composition.

10.3.4 Groundwater Quality Assessment 

ArcGIS software was employed to create Water Quality Index (WQI) maps for the 

2021 and 2022 pre- and post-monsoon periods, illustrating the physicochemical 

fluctuations in groundwater quality. The WQI serves as a comprehensive metric that 

combines various water quality factors, including pH, hardness, and pollutant levels, 

to offer an overall water quality evaluation. By developing WQI maps for different 

seasons, this study examines temporal and spatial changes in groundwater quality. 

The physicochemical variation in groundwater, as depicted in Table 10.3, encom-

passes shifts in water hardness, a crucial indicator for water quality assessment. 

Hardness measurements were taken from 18 hydrogeochemical samples and utilized 

to evaluate groundwater quality across different parts of the catchment area. The 

resulting WQI maps provide a thorough overview of groundwater quality during 

both pre- and post-monsoon seasons. Seasonal water quality differences played a 

significant role in this study. Pre-monsoon periods typically exhibit higher contami-

nant concentrations due to reduced precipitation, while post-monsoon periods may 

experience some dilution but also an influx of surface runoff that introduces new 

pollutants. Table 10.4 showcases Horton’s indexing system, which was utilized to 

categorize groundwater quality into groups such as ‘excellent,’ ‘good,’ ‘fair,’ and 

‘poor,’ based on hardness concentration and other relevant parameters. This classifi-

cation system, applied to both pre- and post-monsoon data, offers valuable insights 

into areas experiencing water quality improvement or deterioration, aiding in the 

prioritization of regions for continued monitoring and intervention.

Figure 10.7a presents water quality data from the post-monsoon season of 2021. 

The highest Water Quality Index (WQI) recorded is slightly above 100, and the 

lowest is around 40. Most bars in the figure are above the 60 mark on the vertical 

scale, indicating moderate to high water quality for many wells. This figure highlights 

variations in water quality across different wells. Figure 10.7b, a bar graph, shows 

WQI values ranging from 40 to 120 for wells in the post-monsoon season, reflecting 

diverse water quality among the sampled regions. Higher WQI values denote poorer 

water quality, while lower values denote better quality.

The water quality classification for the Natravathi and Gurpur Catchments is 

divided into four categories: Poor (represented by a brownish shade), Fair (repre-

sented by a greenish shade), Good (represented by a blue shade), and Excellent 

(represented by the darkest blue shade). Figure 10.8a illustrates the water quality 

status across different well locations in the Catchments after the monsoon season. 

This classification provides a clear visualization of water quality, with each color
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Fig. 10.6 a, b Visualizing 

hydrochemical facies in 

groundwater using piper 

diagram

(a)  Pre-Monsoon 

(b) Post-Monsoon 
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Table 10.3 Categorizing well water samples based on water hardness 

Hardness as CaCO3 (mg/l) Water quality status % of water 

Post-monsoon’21 

% of water 

Pre-monsoon’22 

0–75 Soft 0 12.5 

75–150 Moderately hard 3.85 40.625 

150–300 Hard 38.46 28.125 

> 300 Very hard 57.69 18.75 

Table 10.4 Classification of water quality using standard WQI values (Brown et al. 1970) 

WQI value Water quality % water sample 

Post-monsoon’21 

% water sample 

Pre-monsoon’22 

90–100 Excellent water quality 36 13 

71–90 Good water quality 52 46 

51–70 Poor water quality 8 42 

31–50 Bad water quality 4 0 

0–30 Unsuitable for drinking water 0 0

Fig. 10.7 WQI versus well location

corresponding to a specific water quality category. In contrast, Fig. 10.8b presents 

the Water Quality Index (WQI) map for the pre-monsoon season. This map uses 

circles of varying sizes and colors to represent water quality at different well loca-

tions. Dark green circles indicate poor water quality, orange circles suggest good 

quality, and light pink circles denote excellent water quality. By comparing the pre-

and post-monsoon maps, this visual representation highlights the temporal variations 

in groundwater quality across the region. These maps are essential for environmental 

management, public health monitoring, and resource planning. For instance, areas 

identified with poor water quality can be prioritized for water treatment or further
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investigation to assess health risks. Similarly, this information can be used in resource 

planning to identify regions requiring improved water management strategies.

10.4 Conclusion 

This study utilized geostatistical and GIS methods to evaluate and map groundwater 

quality in the Dakshina Kannada district. The study analyzed field observations and 

laboratory data to determine the spatial distribution of groundwater quality indicators, 

providing insights into aquifer conditions and water table fluctuations affecting fresh 

and saltwater dynamics. The investigation combined freshwater data from upstream 

areas with saline groundwater information from the coastal region. The Water Quality 

Index (WQI) was employed to simplify complex water quality data into a single value 

by integrating multiple parameters. Findings revealed that 13% of pre-monsoon well 

samples exhibited good water quality, while 36% of post-monsoon samples were 

classified as poor. The Piper diagram, which simplifies intricate hydrologic data, 

showed that (SO4 + Cl) was dominant during the pre-monsoon period, indicating 

high groundwater alkalinity and acidity. Bicarbonate (CO3 + HCO3) was the primary 

anion, while calcium (Ca) and magnesium (Mg) were the main cations. Post-monsoon 

cation concentrations ranged from 4.25 to 64.54 mg/l for calcium, 40–520 mg/l for 

chloride, and − 8.05 to 15.44 mg/l for potassium. Pre-monsoon values spanned from 

28–208 mg/l for sodium, 240–840 mg/l for calcium, 19.99–159.9 mg/l for chloride, 

and 0–61.79 mg/l for potassium. WQI results indicated that during the post-monsoon 

period, 36% of sites had excellent water quality, 52% good, 8% poor, and 4% bad. In 

contrast, pre-monsoon data showed only 13% excellent, 46% good, and 42% poor 

quality. The research concludes that drinking water quality is inferior during the 

pre-monsoon period due to higher contamination levels, rendering it unsuitable for 

consumption. Coastal regions are more susceptible to flooding and water scarcity 

in the pre-monsoon season, with increasing seawater intrusion resulting in brackish 

groundwater quality near the shore.
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b 

Fig. 10.8 Spatial distribution of water quality index classification map
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Abbreviations 

Ca Calcium 

CaCO3 Calcium carbonate 

Cl Chloride 

DO Dissolved oxygen 

EC Electric conductivity 

GWL Ground water level 

HCo3 Hydrogencarbonate 

K Potassium 

Mg Magnesium 

Na Sodium 

ORP Oxidation reduction potential 

pH Hydrogen ion concentration 

SO4 Sulphate 

TDS Total dissolved solids 

Temp Temperature 

TH Total hardness 

WQI Water quality index 
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Chapter 11 

GIS-Based Study on Groundwater 

Depletion in NCR Regions of Uttar 

Pradesh, India 

Ayush Tyagi, Raj Singh, and Shalu Kumar 

Abstract Groundwater is one of the most important resources that is gifted by 

nature to mankind, but as the world moves towards urbanization and industrializa-

tion, this valuable resource is being ignored, and people tend to misuse groundwater 

while irrigating and industrial requirements. In this study the problem of ground-

water depletion in NCR regions of the Uttar Pradesh (UP) state is discussed. In 

this study, both primary and secondary data is used. The study is divided into two 

main objectives; first is to calculate the water demand of the districts in order to 

find which sector is consuming most of the water, whether it be a groundwater and 

surface water and for that Central Public Health and Environmental Engineering 

Organization (CPHEEO) manual guidelines are used and geospatial tools were used 

to, and second one is to find out the vulnerable zones and suggest recommendations. 

To achive the second objective, trend analysis of the 5 years Pre and Post monsoon 

groundwater data is used. By integrating geospatial data and analytical techniques, 

the research contributes significantly to the field, offering a comprehensive frame-

work for addressing water scarcity challenges in the NCR regions of Uttar Pradesh 

and potentially serving as a model for other areas grappling with similar issues. 
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11.1 Introduction 

Water is a most precious resource for the survival of each organism on earth, without 

water no one on the earth can sustain their life. The water can be available on the 

surface as well as in groundwater. However, groundwater is one of the most precious 

gifts by God to humanity; it is found below the surface of the earth, under the cracks 

and spaces of the soil, sand, and rock, and can be called subsurface water. These 

water resources are being exploited extensively in many parts of the world, with 

a massive increase in extraction in the past few decades due to the availability of 

new and cheaper drilling and pumping technologies (Laghari et al. 2012; Scanlon 

et al. 2020; Turner et al. 2019). Most groundwater comes from rainfall, when the 

soil reaches saturation level, the water percolates downwards and gets deposited 

into aquifers (Gavrilescu 2021; Salama et al. 1999). The usage of groundwater has 

gradually increased because of the increase in water demand and the shortage of 

surface water during the growth of population and rapid industrialization (Craswell 

2021; Han and Currell 2022; Singh et al. 2024). As the world is moving toward 

development it is exploring new techniques of exploiting this resource. Not only in 

India, this is one of the most common problems worldwide in some of the most 

developed countries like China, Turkey, and parts of the United States of America is 

facing this problem (Dangar et al. 2021). 

In India, mostly groundwater is one of the most exploited resources. The people 

tend to rely too much on the resource for both their personal and business needs 

(Sidhu et al. 2020; Swain et al. 2022). India is an agriculturally rich country, the 

large portion of staple crops like wheat and rice in the country can be grown with the 

help of groundwater (Priyan 2021). Major industrial and urban activities depend upon 

the groundwater in the country and most of the parts of the country like Tamil Nadu, 

Rajasthan, Punjab, and Uttar Pradesh even were facing a crisis of water (Raghavan 

et al. 2021). In a country like India, water demand can be dependent on various other 

factors like changes in temporal, temperature geomorphology of an area, and many 

more. 

The NCR regions of UP are rich in natural resources and people’s abilities. Over 

the years, there has been a significant rise in population and groundwater usage, 

straining aquifers (Saha et al. 2022). These areas, known for agriculture and indus-

tries, are now facing challenges in meeting domestic water demand due to increased 

household needs (Saxena et al. 2021). 

The region, especially districts like Meerut and Bulandsahar, is agriculturally 

and industrially prosperous. Water-intensive crops such as sugarcane and rice thrive 

here. Additionally, major industrial clusters contribute to the economic vibrancy of 

the area (Salim et al. 2024). The NCR geographic area relies heavily on groundwater 

to meet its agricultural, domestic, and some industrial needs (Das et al. 2021). While 

the presence of the Upper Ganga canal is beneficial, there is a concerning trend of 

continued misuse of these vital resources.
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Moreover, groundwater contamination is one of the serious problems that is rising 

nowadays all over the world (Papazotos 2021). As the world moves towards global-

ization, the increased use of technology in their daily life the more they contaminate 

and deplete this vital resource (Li et al. 2017; Raza et al. 2017; Xie et al. 2023). 

Groundwater once contaminated it is nearly impossible to restore it to its original 

quality (Akhtar et al. 2021). However, there is official law on a central level for 

groundwater use but several rules and policies were imposed by different states in 

their region and their implementation is also dependent upon the different levels. 

Therefore, the current study calculates the water demand of the districts of NCR 

regions of UP and identifies vulnerable locations of groundwater depletion using 

Geospatial Tools, and suggests recommendations. Employing advanced Geospatial 

Tools, the study not only quantifies water demand but also uniquely identifies specific 

vulnerable locations susceptible to groundwater depletion. This innovative approach 

provides a nuanced understanding of the spatial dynamics of water resources, 

enabling targeted and effective recommendations for sustainable management. 

11.2 Material and Methods 

11.2.1 Study Area 

The NCR regions of UP has an estimated area of 11,275 sq km which accounts 

31.19% of area (Fig. 11.1). It plays a major role for industrial; infrastructure and 

agriculture point of view and it lies on a western plain which is surrounded by river 

Ganga, Yamuna and Hindon form the sides. Because of this region comes in the 

NCR regions, the vast development has been seen across the regions in terms of 

agriculture, industrial, and development point of view. The justification for picking 

this as a subject of study is because groundwater contamination is an intense issue 

worldwide and the horticulture and modern activities in both the metropolitan country 

spaces of the NCR regions of UP have been expanded by and large inside the range 

of 10 years and it influence groundwater table gravely. The map below represents 

the exact geographical location of the study area.

11.2.2 Dataset and Experiment Design 

11.2.2.1 Calculation of the Water Demand of the District 

For the calculation of the demand of particular sector like industrial, agricultural, 

livestock, hospitals, hotels, schools and colleges, data was collected by using both 

primary and secondary sources and different assumptions were made which are based 

on the pilot survey of the cities. Data for the populations of 1991, 2001 and 2011
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Fig. 11.1 Location of study sites

was taken from the census of India website and methodologies will be discussed for 

each parameter separately below. 

11.2.2.2 Agriculture 

For agriculture the crop wise land statistics were taken from the district agriculture 

board Meerut and data for each crop were also taken from the department and for 

the calculation the below stated formula has used (Fig. 11.2).
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Fig. 11.2 Data collection and calculation 

11.2.2.3 Livestock, School, College, Industries, Hotels and Hospitals 

The data was taken from the secondary sources and calculation standards were 

taken from the CPHEEO manual (https://cpheeo.gov.in/). The calculations of water 

demand for livestock, school, college, industries, hotels and hospital are mentioned 

in Figs. 11.3, 11.4, 11.5, 11.6, 11.7 and 11.8 respectively.

11.2.3 Process of Identifying Vulnerable Locations 

of Groundwater Depletion 

The groundwater table data is taken from the district groundwater board, and for 

performing geospatial analysis QGIS software is used and shapefile were extracted 

using DIVA-GIS website and categorized maps was prepared for the same. The linear 

trend analysis is performed by using MS-Excel software and for the suggestion of the 

recommendation some of the content analysis like literature review, peer reviewed 

journals will be adapted.

https://cpheeo.gov.in/
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Fig. 11.3 Water demand for livestock 

Fig. 11.4 Water demand for school
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Fig. 11.5 Water demand for college 

Fig. 11.6 Water demand for industries 

Fig. 11.7 Water demand for hotels



220 A. Tyagi et al.

Fig. 11.8 Water demand for hospital

11.3 Results and Discussion 

All 5 districts of this region were very different in population, water consumption, 

economic, industrial, and agricultural activities. To calculate the demand for water in 

each district of NCR regions of UP, first, the forecasting of the population was done 

by using the incremental increase method, and their water demand also be calculated 

based on the population forecasted (Table 11.1). 

So, the district Meerut has a forecasted population of 66,62,679 and has water 

forecasted water demand of 328.3 MCM/YR which is comparatively higher than 

Baghpat, Gautam Buddha Nagar because Meerut is experiencing a drastic change 

in the development, people from the NCR regions were migrating towards the city 

in search of a better and comparatively cheaper lifestyle than NCR regions and 

also increase in connectivity from the nearby NCR regions attracted builders and 

industrialists to set up their industries in the outskirts of the city, which subsequently 

increases the populations of the city. Baghpat district has a forecasted population of 

31,97,321 and forecasted water demand is 157.54 MCM/YR the city has the lowest 

water demand because it has a comparatively smaller land area and the city has fewer 

employment opportunities as compared to nearby districts like Ghaziabad, Meerut so 

there is less population in the city. Bulandshahar has the highest forecasted population 

of 84,58,651 and the highest water demand of 416.8 MCM/YR it has the highest 

forecasted water demand because the area of the district is comparatively bigger and 

there are mostly village clusters located around the city and the villagers tend to 

use water carelessly. The forecasted population of Gazhiabad+Hapur is 58,15,232

Table 11.1 Population with water demand 

S. No. Name of district Population Forecasted water demand (MCM/YR) 

1 Meerut 66,62,679 328.3 

2 Baghpat 31,97,321 157.54 

3 Bulandshahar 84,58,651 416.8 

4 Gazhiabad+Hapur 58,15,232 296.5 

5 Gautam Buddha Nagar 35,83,428 176.5 
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and has an estimated water demand of 296.5 MCM/YR this city is very close to 

the NCR region and is facing the extreme development and a lot of corporates and 

builders were investing in the development of the city and also the location of major 

industries like Dabur were located around the city which is increasing the population 

of the city and in case of Hapur the city is associated with the Ghaziabad and people 

working in the nearby NCR region were settled around this city in search of cheaper 

lifestyle as compared to New Delhi, Ghaziabad, Meerut, Gautam Buddha Nagar. 

The Forecasted population of Gautam Buddha Nagar is 35,83,428 and the forecasted 

water demand of the district is 176.5 MCM/YR the city is the main attraction of 

builders and industrialists because most of the landholders of the city were ready to 

sell their land to them in greed for more money and better lifestyle construction of 

skyscrapers and big industrial clusters were attracting people from nearby areas to 

live in the city. 

11.3.1 Water Demand Estimation 

The water demand is estimated based on the following parameters. 

11.3.1.1 Agriculture 

These districts were important from the agriculture point of view as well as the 

presence of the Upper Ganga canal, Yamuna River, Hindon river, sufficient rainfall 

and have plenty amount of groundwater, majorly 4 types of crops were grown in 

this the districts namely Sugarcane, Rice, Wheat, Potato and other horticulture crops 

mustards, pulses, and some fruits like mangoes, watermelon, guava etc. In kharif 

crops there are various qualities of rice were grown like 79,98,113 (numbers assigned 

by the authority according to quality) and in this region generally Has a yield of near 

around 2000–2500 ha/ton the rice crop generally takes near around 90–120 days 

from sown to grown and being harvested. This produced rice is generally being sold 

at the rate of Rs 2100 per quintal, this is the minimal price which is being set by the 

government but the farmers sold at different prices according to the quality of rice 

so in greed of producing good quality they tend to use more groundwater and being 

responsible for groundwater depletion. The sugarcane is also one of the most water 

incentive monocrops which is practiced in this region at a large scale because of the 26 

presence of large sugar mill in this area this area is known for sugar cultivation, large 

lands of farmers and many subsidies by the government and sugarcane is soled at 

the minimum price of Rs 350 per quintal these are the major factors which promoted 

the growth of sugarcane in the region and put stress on the groundwater table of 

the region specially district of Meerut and nearby region witnessed large growth of 

sugarcane in the region and also sugar industries were also encouraging farmers, 

no doubt this crop is helping a farmers lot in improving financial condition but it
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Fig. 11.9 Agriculture water demand 

is consuming groundwater lot of groundwater. The water demand of agriculture is 

shown in Fig. 11.9. 

11.3.1.2 Livestock 

Apart from the rapid industrialization and urbanization this city plays an important 

role in terms of an agricultural point of view despite having modern farming tech-

niques they are also dependent upon cows and buffalos not only from the farming 

point of view but also from the dairy products business which will be proved to be 

extra income for them and also a business of poultry proved to be the great income 

saver for them, however, the water they consume is not very much but it’s an impor-

tant parameter in the calculation of water demand more deeply, the data of them is 

provided in Fig. 11.10.

In the Meerut district the combined water demand of both cows and buffaloes 

is 9.75 MCM/YR the nearby villagers of the district were relatively dependent on
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Fig. 11.10 Livestock water demand

them for agriculture and business activities, the farmers mostly prefer to use animals 

instead of using tractors and other techniques in midst of saving money, the poultry 

demand of Meerut district is 0.30 MCM/YR. Baghpat district has a combined water 

demand for both cows and buffaloes is 5.95 MCM/YR and poultry demand is 0.30 

MCM/YR the area is comparatively smaller than other districts so it has less number 

of livestock and poultry than other districts. District Bulandshahar has the highest 

livestock water demand of 17 MCM/YR because this district is rich in agriculture 

point of view most people of the villages in this district were in the agriculture and 

dairy farming businesses, and the poultry water demand is 0.22 MCM/YR which 

is comparatively higher than other districts. The Ghaziabad + Hapur district has a
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combined water demand for both cows and Buffaloes is 8.815 MCM/YR and a poultry 

water demand of 0.19 MCM/YR. The Gautam Buddha Nagar has a combined water 

demand for both cows and Buffaloes is 4.18 MCM/YR and a poultry demand of 

0.02 MCM/YR as the city is facing a development at a very fast rate which is why 

they have the lowest number of livestock amongst all the cities the people there were 

less indulge in agriculture activities and they have sold their land to the builders and 

shifted themselves to other businesses. 

11.3.1.3 Hospital 

The hospitals are the most important and water consumption is also high in the 

hospitals, especially in these economically growing cities investors are investing in 

the hospitals and existing hospitals were also enhancing their capacities of beds in 

the hospitals the data of Multispeciality hospitals, General hospitals, and Nursing 

homes were given in Fig. 11.11.

In the Meerut district, there are a total of 176 hospitals (Multi Speciality, Nursing 

Homes, General Hospitals) were registered which is the secondhighest after Gautam 

Buddha Nagar and they have a combined water demand of 2.29 MCM/YR. Baghpat 

has a total number of 7 registered hospitals which had a combined water demand 

of 0.13 MCM/YR because it is a smaller district and whenever people suffer from 

any problem they come to Meerut or Ghaziabad for the treatment. The districts 

Ghaziabad and +Hapur have a total number of registered 248 registered hospitals 

and have a combined water demand of 3.14 MCM/YR which is the highest among all 

the districts. The district Bulandshahar has a total number of 105 registered hospitals 

and has a combined water demand of 2.5 MCM/YR, the district Gautam Buddha 

Nagar has a total number of 181 registered hospitals and has a combined water 

demand of 2.5 MCM/YR. 

11.3.1.4 Hotels 

The hotels in these districts were not as much high demand because there were no 

such tourists’ attractions in this area and the hotels also consume less amount of water 

as compared to the other sectors the data on the hotels and their water consumption 

were given in Fig. 11.12.

The water consumed by 48 hotels in the Meerut district is 0.09 MCM/YR which 

is the second-highest after Gazhiabad+Hapur which has 64 hotels and consumes 

0.12 MCM/YR. Baghpat has the lowest number of hotels 1 which is consuming the 

lowest amount of water 0.0019 MCM/YR as compared to these districts because of 

the more village background area and no tourist attraction spots in the city. Gautam 

Buddha Nagar has 23 hotels that consume 0.04 MCM/YR of water as the city is 

facing development more new hotel projects were coming up in the city and the 

number of hotels were increasing significantly.
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Fig. 11.11 Hospital water demand

11.3.1.5 Industries 

This is one of the most water-consuming sectors in these cities, there were majorly 5 

types of industries that were located in these cities which consumes more water can 

it be ground or surface water. Some industries in these areas were involved in the 

theft of ground and surface water, as well as installation of unnotified submersible 

pumps in the production unit to withdraw groundwater for their production and 

cleaning of that area and unusual withdrawal of nearby river or ponds water apart 

from the theft they were also responsible for the contamination of both ground as
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Fig. 11.12 Hotel water demand

well as surface water discharge of their waste directly into the river and surface, 

contaminates the water, unfunctional ETP Plants contribute more to the problem, 

apart from this inattentiveness of officials toward this serious issues contributes more 

to the problem and made the situation worse, the water consumption by different 

clusters of industries and with the type of industries in each district were given in 

Fig. 11.13.

Different industries have different quantities of production and consumption of 

water is also not same in different cities like in case of Sugar industries the city Meerut 

have 5 sugar industries where on an average 1000 tonnes of sugarcane crushed daily 

so they have a combine water demand of 3.65 MCM/YR and it has 1 textile industry
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Fig. 11.13 Industrial water demand

in which 1-tonne textile made daily and have combined water demand of 0.292 

MCM/YR, 5 Distillery units in which 200 kilolitre of alcohol made daily and have 

combine water demand of 0.05 MCM/YR and 2 paper industry in which 10 tonnes of 

paper made daily which having the combined water demand of 0.073 MCM/YR the 

city has no leather industry and it has total water demand of 4.069 MCM/YR. The 

assumptions of production were considered the same for all the districts. Ina Baghpat 

the city has 3 Sugar industries and has a water demand of 2.19 MCM/YR 1 distillery 

unit has a water demand of 0.0109 MCM/YR it has no paper and leather industry and 

it has a combined water demand of 2.49 MCM/YR. In Bulandsahar there are 3 sugar 

mills which have a water demand of 2.19 MCM/YR, and has 2 textile industry which
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has a water demand of 0.5 MCM/YR, the city has the highest number of distillery 

industries among all the cities and has a water demand of 0.12 MCM/YR it has 1 

paper industry which has water demand of 0.03 MCM/YR, it has 2 leather industry 

which has water demand of 14.6 MCM/YR and city has combined water demand 

of 17.53 MCM/YR. The city Ghaziabad + Hapur has 9 sugar industry which has a 

water demand of 6.57 MCM/YR, 42 textile industries which have a water demand of 

12.2 MCM/YR city has no distillery industry, and 36 paper mills which have a water 

demand of 1.3 MCM/YR and has 0 leather industry and has combined water demand 

of 20.14 MCM/YR. The district Gautam Buddha Nagar has 0 sugar industry and has 

33 textile industry which has a water demand of 9.6 MCM/YR 6 distillery industry 

which have a water demand of 0.06 MCM/YR and 60 paper industry which have 

a water demand of 2.19 MCM/YR and has 7 leather industries which have water 

demand of 51.1 MCM/YR the city has combined water demand 62.99 MCM/YR. 

11.3.1.6 School 

These cities in NCR regions of UP play a major role in education point of view the 

education of nearby villages people and residents of the city rely on these schools 

event there are mostly private schools comes under this category but there are some 

are controlled and managed by the government authorities mentioned Fig. 11.14.

In the Meerut district, there are 1392 Primary schools which are the highest in 

numbers and have a water demand of 9.60 MCM/YR. There are 577 upper primary 

schools in number in the city which have a water demand of 1.70 MCM/YR and have 

126 high schools, and 189 senior secondary schools which have a water demand of 

0.012 MCM/YR and 2.79 MCM/YR, and have a combined water demand of 14.12 

MCM/YR. The district Baghpat has 371 primary schools which as water demand of 

2.56 MCM/YR, and have 185 upper primary schools which have a water demand 

of 0.54 MCM/YR, the district has 37 high schools and 71 senior secondary schools 

which have a water demand of 0.47 MCM/YR and 1.04 MCM/YR and have total 

water demand of 4.63 MCM/YR. The district of Ghaziabad has 684 primary schools 

which have a water demand of 4.72 MCM/YR, and has 694 upper primary schools 

which have a water demand of 2.05 MCM/YR, and has 103 high schools and 86 

senior secondary schools which have a water demand of 1.32 MCM/YR and 1.27 

MCM/YR respectively and have total water demand of 4.63 MCM/YR. The district 

Bulandshahar has 1226 primary schools which have a water demand of 8.46 MCM/ 

YR, the district has 475 upper primary schools which have a water demand of 1.40 

MCM/YR and the district has 160 high schools and 153 senior secondary schools 

which have water demand of 2.05 MCM/YR and 2.26 MCM/YR and has total water 

demand of 14.18 MCM/YR. the district Meerut and Bulandshahar have same almost 

the same water demand it is because Bulandshar has a comparatively bigger area and 

Meerut city has more schools than Bulandshahar. The district Gautam Buddha Nagar 

has 514 primary schools having a water demand of 3.55 MCM/YR, the district has 

194 upper primary schools which have a water demand of 0.57 MCM/YR, there are
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Fig. 11.14 School water demand

76 high schools and 46 senior secondary schools which have a water demand of 0.97 

MCM/YR and 0.46 MCM/YR and has total water demand of 5.78 MCM/YR. 

11.3.1.7 Colleges 

In the Meerut district, 171-degree colleges have a water demand of 1.24 MCM/YR 

and 21 ITI Vocational studies colleges have a water demand of 0.12 44 MCM/YR. 

The district has 33 engineering colleges that have a water demand of 1.46 MCM/YR 

and 2 medical colleges which has a water demand of 0.06 MCM/YR. The Baghpat
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district has 49-degree colleges that have a water demand of 0.24 MCM/YR, 11 

ITI Vocational studies colleges that have a water demand of 0.021 MCM/YR, and 

4 engineering colleges which has a water demand of 0.18 MCM/YR and has no 

medical colleges. The district of Ghaziabad 133-degree colleges which have a water 

demand of 0.99 MCM/YR, 34 ITI Vocational studies which have a water demand 

of 0.32 MCM/YR, and 39 engineering colleges which have a water demand of 1.73 

MCM/YR and 1 medical college which has water demand of 0.03 MCM/YR. The 

district Bulandshahar has 59-degree colleges that have a water demand of 0.51 MCM/ 

YR, it has 36 ITI vocational colleges which have a water demand of 0.34 MCM/YR 

and 4 engineering colleges which have a water demand of 0.18 MCM/YR and have 

0 medical colleges. The district Gautam Buddha Nagar has 58-degree colleges that 

have a water demand of 0.48 MCM/YR, 26 ITI vocational colleges which has a water 

demand of 0.17 MCM/YR, 27 engineering colleges which have a water demand of 

1.20 MCM/YR and 1 medical college which has a water demand of 0.03 MCM/ 

YR. The district Hapur has 20-degree colleges which have a water demand of 0.12 

MCM/YR, 3 ITI Vocational colleges which has a water demand of 0.009 MCM/YR, 

9 engineering colleges which have a water demand of 0.40 MCM/YR and 2 medical 

colleges which has a water demand of 0.068 MCM/YR, Fig. 11.15.

11.3.2 Identification of Vulnerable Locations 

of Groundwater Depletion and Recommendation 

The groundwater level of NCR regions of UP faced a sever depletion from the 

past 5 years, because the rapid industrialization, urbanization, and change in the 

lifestyle of the people are continuously putting pressure on the existing aquifers and 

depleting the groundwater level of the regions, most of the activities of the people 

of these regions were dependent on the groundwater and the nearby rivers. The 

lifestyle of people has shifted more toward western culture because of which they 

have increased their businesses which resulted in the more demand for water so they 

see groundwater as a great option of use because there were no such regulations 

and norms for extracting groundwater, agriculture was the main reason, growing of 

water incentive crops such as sugarcane, rice has made the situation worse, despite 

this region receives an average amount of rainfall near around 900 mm which is not 

enough for satisfying the water demand of the fields because farmers of these districts 

have comparatively large farms and fields in which they grow rice and sugarcane and 

different crops and sell them to the industries and local vendors. This region has 

loamy soil which is perfect for the growth of these crops. The groundwater level of 

Pre and Post monsoon was different in different regions. The map which is shown 

below shows the fluctuations in the groundwater level in pre and post-monsoon in 

the past 5 years which region has experienced (Fig. 11.16).

The groundwater table map of the region states that the groundwater level in the 

Meerut district in pre-monsoon shows a growth of 0–0.5 m and in the post-monsoon,



11 GIS-Based Study on Groundwater Depletion in NCR Regions of Uttar … 231

Fig. 11.15 College water demand

it shows a decline of more than 1.5 m below the ground level and cultivation of rice 

along with the sugarcane is possibly the reason for the depletion because during post-

monsoon season cultivation of rice takes place in the region and some requirement 

of water for the rice is taken from the rainfall but still it needs a lot of more water for 

proper cultivation. The groundwater level drop of the Baghpat region remains more 

than 1.5 m below the ground level because there is a mostly rural area and people were 

majorly dependent on the groundwater so it is playing in the danger category whether
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Fig. 11.16 Groundwater table drop map

it be a pre-monsoon or post-monsoon extraction of groundwater in the Baghpat city 

is more as compared to its neighboring districts like Meerut. The district Ghaziabad 

comes under the category of 0.5–1.5 m below the ground level in the pre-monsoon 

season but after the post, the recharge of more than 1.5 m has been seen because 

there is no such rice cultivation taking place in the city, and if places the local farmers 

took water from the small canal named Ramganga which is flowing nearby area. The 

district Bulandshahar always comes under the overexploited category when it comes 

to the groundwater depletion and the main reason is the more cultivation area and 

village area because more population has deviated towards the dairy business for 

which they are mainly dependent on groundwater mostly rich farmers apart from 

farming indulge into the dairy businesses which supply milk-based products to the 

NCR regions in greed of more money and poor and landless farmers worked as 

an employee of rich farmers apart from relocating themselves to a new place. The 

district Gautam Buddha Nagar is the same in terms of groundwater usage there is no 

such drastic change in the extraction and it has seen a recharge of more than 1.5 m 

in the past 5 years. it is because people of the district have sold their land to builders 

and developers in greed for more money and started indulging themselves in other 

businesses the district is very near to the National capital of India New Delhi so that’s 

why the land of the district is in the eyes of builders and developers. 

The residents, 47 however, do not pay much attention to the agriculture side to 

make money, the development schemes of New Delhi have benefited the Gautam 

Buddha Nagar to a great extent like the construction of highways, and high-rise
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buildings in the city have shifted the people towards urbanization and industrializa-

tion. The current scenario of this region simply states that the groundwater is an easily 

available resource that is not being taken care of well, even after people know that 

once groundwater is depleted it will take many years to recharge the aquifers again. 

There are no such strict policies of the government related to extraction and usage 

of groundwater, in some of the regions of these districts groundwater is not only 

depleted but contaminated also the presence of heavy metals such as Nickel, cs, Fe, 

Pb, etc. were found in the groundwater table these districts. However, Uttar Pradesh 

Government has shown some activeness regarding groundwater depletion and tried to 

introduce some new rules like the mandate of rainwater harvesting systems in houses 

and complexes which has an area of more than 150 sqm, the mandate of installation of 

STP and ETP in industrial and development projects, restrictions on the installation 

of submersibles pumps without the permission of the government, etc. but the imple-

mentation of these laws was not checked regularly. The farmers secretly installed 

submersibles pumps in their fields and continue extractions, and also withdrawal of 

river water like the upper Ganga canal is a problem and because of the carelessness of 

the administration, the groundwater depletion is slowly becoming one of the serious 

problems not only in these districts but also on the state level. Local people should 

understand the importance of the groundwater and the government should make citi-

zens aware of the seriousness of the problem and future risks, regular audits of the 

farms, and industries should be done by the government officials, and imposing fines 

and penalties should be done by the government against the violators. 

The trend analysis of the following districts also reveals some of the unexpected 

results related to groundwater, the linear trend analysis was performed from the 

groundwater data that was taken from the groundwater board and the water table. 

11.3.2.1 Meerut Seasonal Groundwater Trend 

The seasonal groundwater level trend of Meerut city reveals that in the pre monsoon 

2015 the groundwater level was 11.4 mbgl in 2015 and in 2020 it was 12.24 mbgl 

(Fig. 11.17). The post monsoon groundwater level in 2015 was 12.54 mbgl and huge 

variation of 14.99 mbgl was seen in 2020. Because of the cultivation of rice and 

sugarcane was the main reason for the fluctuation in groundwater table of the city.

11.3.2.2 Bulandsahar Seasonal Groundwater Trend 

The seasonal groundwater level of Bulandsahar district reveals that the in pre 

monsoon 2015 the groundwater level was 12.17 mbgl in 2015 and 14.36 mbgl in 

2020 (Fig. 11.18). The post monsoon groundwater level was 12.67 mbgl and the 

water level in 2020 has seen change of 14.8 mbgl in 2020. The city has compared 

bigger area as compared to the other districts and the district has more influence 

of village so lot of people were engaged into primary sectors of employment. The 

fluctuation of groundwater shows that the residents were much more dependent upon
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Fig. 11.17 Groundwater trend (Meerut)

Fig. 11.18 Groundwater trend (Bulandsahar) 

groundwater and have installed submersibles pumps in their houses and using this 

water for their household as well as business purposes and some industries of the 

district were involved in the theft of groundwater. 

11.3.2.3 Ghaziabad + Hapur Seasonal Groundwater Trend 

The seasonal groundwater trend of Gazhiabad + Hapur in pre monsoon reveals 

that the in 2015 the groundwater level was 10.28 mbgl and in 2020 the water level
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Fig. 11.19 Groundwater trend (Gazhiabad + Hapur) 

was 13.4 mgbl (Fig. 11.19). The ground water level in post monsoon on 2015 was 

11.56 mbgl and 2020 in 12.66 mbgl. The post monsoon ground water trend of district 

in 2015 was 11.56 mbgl and in 2020 was 12.66 mbgl. The fluctuation in groundwater 

table and possibly reasons where the city was facing development both in terms of 

infrastructure and in agriculture point of view the Ghaziabad was facing advancement 

in development as it was close to Delhi and Hapur region is facing advancement in 

growing of water incentive crops. 

11.3.2.4 Gautam Buddha Nagar Seasonal Groundwater Trend 

The district Gautam Buddha Nagar show the groundwater level in pre monsoon 

2015 was 10.07 mbgl and in 2020 it was 12.55 mbgl and in post monsoon 2015 

it was seen at 10.53 mbgl and in 2020 it was seen 12.87 mbgl (Fig. 11.20). The 

groundwater level has shown less fluctuation in past years because the city has face 

advancements in development and the agriculture land has been sold to the builders 

and developers and villagers and nearby people indulged in other businesses. The 

condition of groundwater in the city is slightly better than other districts because 

farming was not so much promoted in this region.

11.3.2.5 Baghpat Seasonal Groundwater Trend 

The groundwater level in pre monsoon 2015 is 13.6 mbgl and 13.99 mbgl in 2020. 

The ground water level in post monsoon 2015 is 12.58 mbgl and 15.22 mbgl in 2020 

(Fig. 11.21).
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Fig. 11.20 Groundwater trend (Gautam Buddha Nagar)

Fig. 11.21 Groundwater trend (Baghpat) 

11.4 Conclusion 

From the first objective, it is estimated that the water demand of all the 5 districts 

were very different in terms of water consumption and it can be concluded that the 

population of these districts has increased at an exponential rate, residents were using
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this resource carelessly and causing depletion. Apart from this, agriculture consumes 

most of the water whether it be a ground or surface and continuously putting pressure 

on the aquifers and production of water incentive crops. Subsidies by the government 

is the main reason for the depletion, Gautam Buddha Nagar consumes most of the 

water in industrial sector and Baghpat consumes least. More than 56MCM/YR of 

water can be consumed by school sector and 8.05 MCM/YR consumed by colleges 

some of them uses ground water and some uses surface water. Hotels in these districts 

consumes least amount of water because there are no as such tourist attraction places 

in these districts. The hospital in the district consumes 10.56 MCM/YR of water 

some use groundwater and some use surface water for their operation. From the 

second objective it can be concluded that the districts Baghpat and Bulandsahar 

is worst in terms of ground water level and they extract most of the groundwater. 

The condition of Meerut has shown a decline and cultivation of sugarcane and rice 

is more in the district, on the other hand the condition of Ghaziabad and Hapur 

has shown an improvement in groundwater table in past 5 years. The condition of 

Gautam Buddha Nagar seems stable in past 5 years and because of rapid urbanization 

and industrialization in the district and the trend analysis of groundwater table of 

each district reveals the constant fluctuation in the groundwater table despite of 

being having upper ganga canal. Yamuna river and river Hindon is available in these 

districts. These districts continuously extract excess groundwater and government 

is equally responsible for this because of announcing too much policies on farming 

and urbanization motivate residents towards development without thinking of the 

resources. 
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Chapter 12 

Evaluating Soil Erosion in Dehradun 

Using the RUSLE Model: Challenges, 

Impacts, and Policy Strategies 

for Effective Soil Conservation 

Himanshu Sahu, Jyoti Nagarkoti, Purnendu Sardar, Pooja Purohit, 

Arun Pratap Mishra, Mriganka Shekhar Sarkar, and Ali R. Alruzuq 

Abstract Soil erosion poses a significant environmental challenge in Dehradun 

due to its complex, steep terrain, heavy rainfall, and rapid urbanization. This study 

employed a Google Earth Engine-based approach to assess the average soil loss annu-

ally using the Revised Universal Soil Loss Equation (RUSLE). The analysis used 

various factors, including rainfall-runoff erosivity (R), soil erodibility (K), slope 

length (L), slope steepness (S), cropping management (C), and supporting conserva-

tion practices (P), to evaluate regional soil erosion potential. Our findings indicated
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substantial soil loss in most of the study area (78%) with an average soil erosion 

rate of 488.58 t/ha/year annually. The distribution of soil erosion strongly corre-

lated with areas of steeper slopes. Our study emphasized the critical roles of factors 

such as topography, land use and rainfall erosivity in influencing erosion patterns 

in Dehradun. To mitigate such risks, we recommend a holistic approach towards 

soil management by using sustainable development goals (SDGs) as a road map 

and implementing targeted conservation measures, increasing vegetation cover with 

strict policies on deforestation and community engagement in land conservation. 

These strategies are essential for preserving Dehradun’s natural resources, promoting 

long-term environmental sustainability, and supporting the SDG goals. 

Keywords Afforestation · Dehradun · Hydrological impact · Soil erosion ·

Sustainability 

12.1 Introduction 

Soil erosion is a natural phenomenon that results in the detachment and displacement 

of soil particles from the soil surface (Govers et al. 1990; Flanagan 2002) through 

natural factors such as wind, water, and gravity (Fayas et al. 2019). It involves a 

diverse host of factors with different combinations, variations, and interactions that 

affect the soil cover, as well as interactions that affect the soil cover and are further 

alleviated by human activities (Gao et aL 2018; Römkens et al. 2002). Soil erosion 

depletes soil fertility, negatively impacts the environment and poses significant chal-

lenges to agricultural productivity and water quality of the region (Prasannakumar 

et al. 2012), which becomes a significant environmental concern (Elsen et al. 2003; 

Singha et al. 2006). Overgrazing, inadequate technology, poor agricultural practices, 

steep topography, gully development, rainwater run-off and nutrient loss due to sedi-

mentation are key factors exacerbating erosion (Zerihun et al. 2018). The occurrence 

and intensity of rainwater run-off are influenced by land use and land cover (Hovius 

1998; Karvonen et al. 1999; Chen et al. 2001). Globally, from the World’s terrestrial 

ecosystems soil erosion leads to at least 75 billion tonnes of soil loss (Pimentel and 

Kounang 1998) among which India’s average annual soil loss is about 5.3 billion 

tonnes (Dogra 2011), which leads to decreased productivity, representing a significant 

degradation hazard all over India (Gupta 2007; Mahapatra et al. 2018). 

In the Indian Himalayan Region (IHR), studies in the river basin have shown that 

the rate of soil loss is extremely high, ranging from 20 to 9p t/ha/yr. Indian Himalayan 

region, characterized by its young mountains, steep and dissected topography, 

shallow soil depth, predominantly coarse-textured soils with limited water-holding 

capacity, ongoing agricultural practices on slopes and active tectonic processes, is 

highly susceptible to erosion (Sati et al. 2011; Shukla et al. 2020; Rawat et al. 2017). 

Soil erosion in these catchment areas, followed by sediment deposition in water-

ways, significantly impacts reservoir storage capacity and deteriorates downstream 

water quality (Walsh et al. 2005; Yereseme et al. 2022). Additionally, Uttarakhand,
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situated within this region, is highly susceptible to natural disasters like cloudbursts, 

flash floods, earthquakes and landslides due to its proximity to geographically active 

zones and irregular climatic patterns (Kansal and Singh 2022). These natural events 

result in soil displacement, adversely affecting the agricultural productivity and the 

health of natural ecosystems (Behera et al. 2020; Jamal and Sen 2024; Negese et al. 

2021). It leads to reduced soil fertility and diminished crop yields, posing a threat 

to regional and national food security and environmental sustainability (Dapin and 

Ella 2023). There is a growing recognition of the strong connections between soil 

degradation and issues such as food insecurity, biodiversity loss, diminished envi-

ronmental security, societal instability, poverty and conflict (Keesstra et al. 2016). 

Further, poor land use practices, deforestation, burning and clearing of forests cause a 

loss of soil material of about 4.1 tonne per ha per year due to rolling towards foothills 

in steep slopes (Mahapatra et al. 2018). 

Presently, water-induced soil erosion is identified as one of the most critical envi-

ronmental challenges worldwide (Jacobson 2011; Devatha et al. 2015), especially in 

Uttarakhand, facing severe challenges of water-induced soil erosion due to extreme 

precipitation therefore enhanced storm run-off volumes (Shushter et al. 2015; Maha-

patra et al. 2018). Rainfall and soil erosion are closely interconnected through the 

combined effects of raindrop impact, which detaches soil particles, and surface run-

off, which transports them (Mkhonta 2000). Expansion of the impervious surfaces 

disrupts the natural hydrological cycle, leading to increased run-off, reduced ground-

water recharge, and heightened flood risks (Mandal et al. 2024; Arnold and Gibbons 

1996; Misra  2011; Rodak et al. 2020). Impervious surfaces combined with removing 

forest cover and land degrading affect the water hydrology and soil topography 

(Watson et al. 1981; Reinelt et al. 2023; Walsh 2000; Rhodes et al. 2001; Faulkner 

2004; NEERI 2016). Extreme rainfall contributes majorly to soil loss (Okorafor et al. 

2017), which is susceptible to rainfall erosivity is characterized in terms of volume, 

duration, and intensity of the rainfall and the physical properties of the soil (Costea 

2012; Oduro-Afriyie 1996). Stormwater run-off carries soil sediments, which often 

cause surface clogging due to sedimentation (Xiong et al. 2023, Gogate and Rawal 

2012), which causes failure of traditional drainage systems (Tsihrintzis and Hamid 

1997; Urbonas 2000; McGrane 2016 Booth and Jackson 1997; Jones and Macdonald 

2007). 

The capital city of the state of Uttarakhand, Dehradun, is popular for its diverse 

and undulated topography (Pathak et al. 2024). Dehradun is in the Doon Valley, 

bordered by the Himalayas to the north and the Shivalik Hills to the south, with 

average annual precipitation exceeding 2000 mm (Indian Meteorological Department 

2020). The combination of steep slopes and heavy rainfall results in high run-off 

volumes, increasing the risk of flash floods and waterlogging, particularly in low-

lying areas (Dhruva 1987; Jain and Kumar 2012; Singh et al. 2022; Pandey and 

Vishwakarma 2019), leading to soil displacement. Thus, assessing soil erosion in 

hilly regions like Dehradun is crucial for implementing effective soil management and 

mitigation measures (Bansal et al. 2015). Hence, policies must be reconstructed using 

historical and predicted data to mitigate water erosion, including gully erosion and 

other environmental challenges such as droughts and flood risks. With the likelihood



242 H. Sahu et al.

of increased extreme weather events and associated economic losses in the future, 

such measures are vital (Winsemius et al. 2016; Ghosh and Mukherjee 2022). 

The soil erosion prediction primarily relies on models developed to measure soil 

loss under natural run-off or simulated rainfall conditions across diverse soil topogra-

phies and their management practices. Popular models include the Water Erosion 

Prediction Project (WEPP) (Flanagan and Nearing 1995), the Universal Soil Loss 

Equation (USLE) (Wischmeier and Smith 1978), later refined as the RUSLE (Renard 

et al. 1997), which operates on similar principles as USLE but incorporates several 

improvements in the calculation of various factors (Kumar and Kushwaha 2013). 

Built on extensive experimental and monitored data, these models are robust tools 

for estimating soil erosion rates based on rainfall, topography, soil characteristics, 

and management (Römkens et al. 2002). RUSLE for water-based erosion estimates 

long-term average annual soil loss by combining multiple factors: rainfall erosivity 

(R), soil erodibility (K), slop length (L), terrain steepness (S), Vegetation cover (C), 

and conservation practices (P) (Kumar and Kushwaha 2013). Numerous studies in 

Asian countries such as Nepal, India, Sri Lanka, Thailand, China and Myanmar (Saha 

et al. 2018; Chang, 2010; Dissanayake et al. 2019; Gayen et al. 2020; Koirala et al. 

2019; Chen et al. 2024 Sourn et al. 2022) have undertaken erosion studies at national 

level employing this approach (Gilani et al. 2021; Gyeltshen et al. 2022; Uddin 

et al. 2018). Similar studies across Indian Himalayan Region used remote sensing 

and field-based data with the RUSLE or variants to estimate soil erosion across the 

Indian Himalayan Region (Kumar et al. 2014; Chanyal 2020; Gupta and Kumar 2017; 

George et al. 2021). These studies have assessed soil loss rates across diverse land-use 

systems under varying scenarios, including sub-watersheds in the Shivalik Hills, hilly 

watersheds in the mid-Himalayan region of Uttarakhand, and the broader Himalayan 

ecosystem of Uttarakhand (Kumar and Kushwaha 2013; Kalambukattu and Kumar 

2017; Mahapatra et al. 2018; Olokeogun and Kumar, 2020). Such studies suggested 

crucial measures for soil and water management can manage soil loss, improve 

hydrological balance, and enhance agricultural and forestry productivity, ultimately 

reducing the rate of reservoir siltation (Naryana 1987). A similar study across Nepal’s 

Jhimruk watershed used the RUSLE model to calculate the erosion status within the 

watershed (Pandey and Gurung 2022), many such studies across Nepal Himalayas 

cover different land types with varying elevations and climatic conditions provide 

suggestions to plan mitigation strategies (Shrestha 1997; Uddin et al. 2016; Gardner 

et al. 2000). While these studies demonstrate the utility of the RUSLE model in 

assessing spatial erosion patterns in the IHR, more research is needed to understand 

the complex interactions between climate change, land use, and soil properties that 

drive erosion processes in this ecologically sensitive and economically important 

region. Climate change is expected to significantly impact soils’ physical, chem-

ical and biological properties in many areas due to rising temperatures and shifting 

precipitation patterns, influencing microbial communities and their activity rates. 

More frequent extreme precipitation rates are expected to accelerate erosion rates 

(Eekhout et al. 2018). 

Regional-scale studies, which enable large-scale assessments of soil erosion, play 

a critical role in supporting stakeholders and policymakers in developing regulatory
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policies that promote the sustainable and efficient use of land resources (Wei et al. 

2012). Achieving land restoration and management of soil health can be done through 

SDGs (Lal et al. 2021). The SDGs provide a framework with specific goals, targets 

and indicators for sustainable land management (Bouma et al. 2019). Enhancing 

soil productivity and rehabilitating degraded soils are recognized as critical focus 

areas for sustainable land management to support the achievement of key sustainable 

development goals (Lal et al. 2021). In their study, Lal et al. 2021 demonstrated the 

SDGs such as SDG 1 (No Poverty), SDG 2 (Zero Hunger), SDG 3 (Good Health 

and Well Being), SDG 6 (Clean Water and Sanitation), SDG 14 (Life Below Water), 

SDG (Climate Action), and SDG 15 (Sustainable Use of Terrestrial Ecosystems) 

have direct connections to soil conservation efforts. They also contribute indirectly 

to achieving other SDGs (Bouma and Montanarella 2016; Lal et al. 2021; Vanino 

et al. 2023). 

The use of RUSLE and spatial modeling in Uttarakhand is attempted by George 

et al. (2021) to predict the soil erosion rates and their spatial distribution in the state. 

Mahapatra et al. (2018) assessed soil erosion in Uttarakhand using 10 km × 10 km 

grid data to address the various factors responsible for erosion and interpolating data, 

which neglected high intra-grid spatial variability concerning the various factors for 

erosion in these terrains. Despite several river basin studies employing Google Earth 

Engine (GEE) and other geospatial techniques to predict land degradation rates in 

Uttarakhand (Krishna et al. 2016; Kumar et al. 2024a b; Kumar et al. 2022; Raj  

et al. 2023), not many attempts have been made for the erosional rate of soil loss 

in Dehradun. Accurate soil erosion monitoring results are essential to analyze the 

patterns and trends of soil erosion (Senanayake et al. 2024; Garg and Anand, 2022). 

Moreover, several studies focus on soil erosion and soil management. Still, many 

policymakers and researchers remain uncertain about effectively translating these 

findings into actionable strategies for promoting sustainable land management to 

achieve the SDGs (Senanayake et al. 2024). Therefore, in this study, we attempted 

to predict the annual Soil loss in the Dehradun region of Uttarakhand using the 

Google Earth Engine (GEE) through RUSLE modeling to suggest measures for soil 

management and effective water run-off policies in Dehradun to achieve SDGs goals 

in hilly terrain such as Dehradun. 

Our research specifically addresses the unique challenges faced by Dehradun. 

Unlike previous studies that primarily focus on larger Himalayan basins or broad 

regional scales, we concentrate on Dehradun’s distinct vulnerabilities stem from 

steep topography, high rainfall, and rapid urbanization. Additionally, we incorporated 

the Normalized Difference Vegetation Index (NDVI) into the RUSLE calculations, 

allowing us to account for seasonal differences in green cover. This enhancement 

provides a more dynamic and accurate assessment of the cropping management factor 

(C) in the RUSLE equation. Moreover, our study connects soil erosion modeling with 

actionable policy recommendations that align with the Sustainable Development 

Goals (SDGs). This approach bridges the gap between geospatial analysis and prac-

tical conservation strategies. Finally, we present high-resolution insights into erosion 

dynamics. By utilizing finer spatial resolution datasets and incorporating detailed
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land-use classifications, our study more effectively captures intra-grid variability 

than broader-scale studies, allowing for more precise intervention planning. 

12.2 Study Area 

Dehradun district is located between latitudes 29° 95′ N and 30° 99′ N and longitudes 

77° 57′ E and 78° 31′ E. The Ganges River bounds it to the East and the Yamuna 

River to the West. The Himalayan Range flanks the north part of the district, while 

the Shivalik Range lies to its south. As one of the most populous districts in Uttarak-

hand, Dehradun spans an area of 3088 km2. According to the 2011 Census, it had a 

population of 1.6 million and a population density of 549 people per km2 (Census 

of India 2011). By 2023, the population is estimated to have grown to 2.25 million. 

The district’s elevation varies between 269 and 3062 m. 

Dehradun district is administratively organized into seven tehsils and six devel-

opment blocks, encompassing 767 villages. During winter, particularly in January, 

the minimum temperature can drop to as low as 3.6 °C, while the maximum temper-

ature typically reaches 19.3 °C. In contrast, the summer months, especially June, 

experience significantly higher temperatures, with minimums around 29.4 °C and 

maximums peaking at 34.4 °C (Sharma et al. 2012; Dhankar et al. 2024). 

The district receives most of its annual rainfall, averaging 2073.3 mm, between 

June and September, predominantly driven by the southwest monsoon. This heavy 

monsoonal rainfall is critical in sustaining the district’s agricultural activities and 

replenishing water resources. However, pre-monsoon showers and occasional winter 

rain contribute to the overall precipitation pattern. The varied climatic conditions and 

rainfall distribution significantly influence the region’s ecosystem and hydrological 

dynamics. (Indian Meteorological Department. 

12.3 Methodology 

This study utilized Google Earth Engine (GEE) approach to assess Average Soil Loss 

(A) patterns using the RUSLE. This analysis incorporated multiple parameters: rain-

fall–run-off erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), 

cropping management (C), and supporting conservation practices (P), which were 

integrated using thematic layers derived from satellite imagery and environmental 

datasets. Rainfall erosivity (R) was determined based on long-term precipitation 

records. Soil erodibility (K) was assessed through GEE, considering Dehradun’s 

distinct soil characteristics. 

The LS factor, cropping Management (C), and supporting conservation practices 

(P) were evaluated using GEE and satellite data. The study also incorporated the 

NDVI into the cover and management (C) factor calculation to reflect changes in
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Fig. 12.1 A flowchart illustrating the methodology used in the study 

seasonal plant cover. The slope of the terrain was considered a key factor. The GEE-

based methodology provided detailed spatial insights into soil erosion risks across 

the Dehradun region, demonstrating scalability, efficiency, and accuracy in analyzing 

large-scale geospatial data for erosion modeling. The results contribute insights into 

sustainable land management strategies in Dehradun. The process of workflow is 

given in Fig. 12.1. 

12.4 RUSLE Computation 

12.4.1 Soil Loss in Unit Area (A) 

To estimate the average annual A within the study area, the RUSLE was applied using 

the Google Earth Engine (GEE) framework (Lucà et al. 2018; Milodowski et al. 

2020; Mitasova et al. 2013; Salvacion 2023). The equation, expressed in Eq. (12.1), 

is presented as follows. 

A = R′
· K ′

· L′
· S ′

· C ′
· P (12.1) 

In this equation, A denotes the average annual soil loss in tons per hectare per year. 

The components of the equation are defined as follows: Rʹ represents the rainfall-

runoff erosivity factor (MJ mm ha−1 h−1 yr−1), Kʹ signifies the soil erodibility factor 

(ton ha hr MJ−1 ha−1 mm−1), Lʹ is the slope length factor (dimensionless), Sʹ is the 

slope gradient factor (dimensionless), Cʹ indicates the cropping management factor 

(dimensionless, ranging from 0 to 0.5), and P reflects the supporting conservation 

practice factor (dimensionless, ranging from 0 to 1). Based on GEE, this approach
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integrates various geospatial layers derived from satellite imagery and environmental 

datasets, enabling a spatially detailed evaluation of soil erosion potential across the 

study area and providing insights into sustainable practices for land management. 

12.4.2 Rainfall Erosivity (Rʹ) Factor  

The Rʹ is critical in determining soil erosion potential. The intensity of rainfall signif-

icantly influences soil erosion, with increased rainfall rates and larger drop sizes 

leading to heightened sheet and rill erosion due to enhanced run-off flow. To quan-

tify Rʹ, the monthly rainfall data spanning two years (2020–2022), were used by 

employing a widely accepted equation (Eq. 12.2) that relates Rʹ to annual rainfall 

(P): 

R′ =  79 + 0.363 · P (12.2) 

The spatial distribution of the Rʹ was derived using Kriging interpolation methods 

within the GEE framework. Satellite-based precipitation data at 1 × 1 KM gridded 

around the study area comprehensively represented regional Rʹ patterns. 

12.4.3 Soil Erodibility (Kʹ) Factor  

The soil erodibility factor (Kʹ) is essential for evaluating the inherent vulnerability of 

soils to erosion caused by rainwater and run-off. This factor reflects various soil char-

acteristics, including mineralogical, physical, chemical, and morphological proper-

ties. In the present analysis of the Dehradun district, a cloud-based geospatial anal-

ysis through GEE to estimate Kʹ was used. By examining soil types and texture maps 

specific to the watershed, Kʹ values were assigned that ranged from 0 to 1, where 

higher values indicate greater susceptibility to erosion. 

12.4.4 Topographic (LS) Factor 

The LS factor is vital in assessing soil erosion rates. It combines slope length (Lʹ) and 

slope steepness (Sʹ) into a unified index. The Lʹ factor accounts for how slope length 

affects erosion by considering the distance from where runoff initiates to where it 

deposits material. In contrast, the Sʹ factor reflects how steepness influences erosion 

rates. The 30 m SRTM digital elevation model (DEM) from USGS was used to 

compute this LS factor. The calculation was performed using Eq. (12.3).
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LS =

(

Flow accumulation · Cell Size 

0.0896

)0.4 

· (sin(Slope)/0.0896)1.3 (12.3) 

This calculation-effectively showed the areas prone to increased run-off and 

erosion. 

12.4.5 Land Cover (Cʹ) Factor  

The Cʹ is influenced by land use and is particularly susceptible to anthropogenic 

activities aimed at mitigating erosion. Calculating this factor across a large watershed 

can be complex due to spatial variations in land cover patterns. To address this 

challenge, MODIS land use and land cover data at a resolution of 500 m within 

GEE were utilized using a supervised classification approach based on maximum 

likelihood algorithms for classification accuracy verification for each LULC class. 

The study area was categorized into five major classes: agricultural land, barren 

land, built-up areas, vegetation, and water bodies, achieving an overall accuracy 

rate of approximately 87.39%. Each class was assigned a C value between 0 and 

1; lower values indicate minimal soil loss, while higher values suggest increased 

susceptibility. 

12.4.6 Conservation Practice (P) Factor 

The conservation practice (P) factor reflects the effectiveness of management prac-

tices in reducing soil erosion through elements such as vegetation cover and run-off 

control measures. The RUSLE integrates this P factor to represent the combined 

influence of land cover, support practices, land use, slope length, and custom adjust-

ments on soil erosion dynamics. GEE’s capabilities were used for scalable analyses 

to calculate this factor by extracting relevant properties related to cover (Cʹ), support 

practices (M), land use (Lʹ), slope length (Sʹ), and custom adjustments. 

12.4.7 NDVI 

NDVI is a key pointer of vegetation health and cover, directly influencing the cover 

management factor in RUSLE calculations. By analyzing its values over different 

periods, seasonal variations in vegetation cover were captured using Eq. (12.4). 

NDVI = 
NIR − Red 

NIR + Red 
(12.4)
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Higher NDVI values correspond with denser vegetation cover, which leads to 

lower C factors. 

12.4.8 Slope 

Slope dynamics are fundamental in estimating soil loss as they directly impact 

water run-off’s erosive potential; steeper slopes enhance rainfall force and accelerate 

surface run-off, contributing significantly to soil detachment and transport processes. 

The LS factor in RUSLE explicitly accounts for slope length and steepness when 

assessing erosion susceptibility across varying terrains. Through this comprehensive 

approach utilizing GEE’s capabilities, notified policymaking in land management 

practices aimed at reducing soil loss while promoting sustainable strategies for land 

use within the study area. 

12.5 Results 

12.5.1 Soil Loss 

Soil loss was quantified in tons per hectare per year (t/ha/year), revealing that a 

significant portion of the study area experiences high levels of soil erosion. The 

spatial distribution of soil loss is closely associated with regions characterized by 

steeper slopes. Soil loss was categorized into five classes: Slight (< 10 t/ha/year), 

Moderate (10–40 t/ha/year), High (40–70 t/ha/year), Very High (70–100 t/ha/year), 

and Severe (> 100 t/ha/year). The Severe category accounts for approximately 46% 

of the study area, covering 84,594.6 hectares. The Very High category represents 

around 12% of the area (20,678.68 ha), while 20.4% (38,349.55 ha) falls under the 

High category. The Moderate category constitutes 22.4% of the area (42,109.31 ha), 

and the Slight category accounts for only 0.9% (1691.89 ha). The distribution of soil 

loss throughout these categories is shown in Fig. 12.2.

12.5.2 Rʹ 

Various studies (Jain et al. 2001; Dabral et al. 2008) have indicated the rate of soil 

erosion in catchment areas exhibits heightened sensitivity to variations in rainfall. 

Daily rainfall measurements are more effective in reflecting changes in soil erosion 

rates, thereby aiding in characterizing the seasonal sediment yield distribution. In 

contrast, annual rainfall data offers benefits such as easy accessibility, straightforward 

calculations, and enhanced consistency of the exponent across regions (Shinde et al.
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Fig. 12.2 Pie chart of soil loss class distribution

2010). Consequently, this study employed average annual rainfall—calculated by 

dividing total rainfall by the number of rainy days—for the computation of the R 

factor (Eq. 12.2). The estimated R factor values ranged from 1168.87 to 1642.16 MJ/ 

mm·ha−1 h−1/year, highlighting that the study region experiences significant rainfall 

as evidenced by the analysis results Fig. 12.3. 

Fig. 12.3 The spatial distribution of Rʹ in Dehradun Districts
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12.5.3 Soil Erodibility Factor (Kʹ) 

Kʹ factor values were allocated to the corresponding soil types on the soil map to create 

a soil erodibility map. The Kʹ factor was observed to range from 0.06 to 0.1. Lower 

Kʹ factor values are typically linked with soils characterized by low permeability and 

reduced antecedent moisture content. 

12.5.4 Topographic Factor (LS) 

The LS reflects the impact of slope length and steepness on the erosion process. It was 

determined by incorporating flow accumulation and slope percentage as input param-

eters. The analysis indicates that the value of the topographic factor increases, ranging 

from 1.7 to 179.35, in response to rising flow accumulation and slope steepness. A 

map of the LS factor is presented in Fig. 12.4. 

Fig. 12.4 Spatial distribution of LS factors in the study area
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Fig. 12.5 A land-use (C) factor map showing the spatial distribution of erosion susceptibility 

12.5.5 Land-Use Factor (C) 

The analysis indicates that various land-use classes within the region of interest 

exhibit differing potential degrees of soil erosion. A higher C factor indicates more 

erosion. Notably, the built-up regions, riverbeds, and barren areas demonstrate the 

highest susceptibility to erosion—conversely, areas characterized by dense or sparse 

vegetation and cropland present relatively lower erosion risks. Comprehending land-

use classes and their associated erosion risks is crucial for effective land-use planning 

and implementing sustainable agricultural practices to minimize soil erosion. 

The C-factor map, illustrated in Fig. 12.5, is beneficial for identifying areas 

with varying erosion potentials. This approach allows for the creation of targeted 

soil conservation strategies, enhances the effectiveness of erosion control measures, 

and fosters long-term environmental sustainability by directing conservation efforts 

toward the areas that need them most. 

12.6 Discussion 

The Dehradun district is important for examining the dynamics of soil erosion. It 

is crucial to implement an integrated strategy for land-use planning and to create 

effective conservation policies. A detailed analysis of various key factors is vital
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for making well-informed decisions concerning the management of soil erosion 

and the encouragement of sustainable land use in this environmentally sensitive 

area. Among these factors, the topographic (LS) factor plays an important role, as 

it highlights the erosion vulnerability of specific locations by integrating data on 

slope length and steepness as it directs conservation efforts toward areas most at 

risk, emphasizing the importance of slope analysis (LS) in the strategic formulation 

of erosion management interventions. Regions with steeper slopes or longer lengths 

are recognized as particularly susceptible to erosion, warranting prioritized attention. 

The approach is further enhanced by assessing the land cover (C) factor, which 

categorizes the district into distinct primary land-use classes. This classification 

reveals that areas with dense tree cover and built-up regions are less prone to erosion, 

while regions with sparse vegetation may experience higher erosion risks. This clas-

sification facilitates the development of targeted conservation strategies, allowing for 

concentrated interventions in the most at-risk land-use areas, which supports the aims 

of SDG 13 (Climate Action). Moreover, assessing the effectiveness of current conser-

vation efforts through the conservation practice (P) factor is crucial for enhancing and 

optimizing erosion control methods. The analysis showed that 78% of the watershed, 

covering 142,000 ha, falls into the severe soil erosion category, which predominates 

the landscape and indicates critical soil loss. This highlights the pressing necessity for 

timely and well-organized erosion control initiatives to fulfill the objectives of SDG 

15 (Life on Land). The findings offer valuable insights into land managers and poli-

cymakers to prioritize and tailor conservation strategies based on the distinct features 

of each soil class, ensuring sustainable land use and environmental protection in the 

Dehradun District. The study’s outcomes are illustrated in Fig. 12.6, which reveals 

that the annual mean soil loss rate for the area is 488.58 t/ha/year. Such levels of soil 

loss can contribute to landslides in steep regions, increasing the area’s susceptibility.

Furthermore, the soil erodibility (K) factor provides insights into the variability 

of soil characteristics across Dehradun. Understanding the diverse erosion suscepti-

bilities of different soil types is essential for prioritizing and customizing protective 

measures, ensuring that interventions are specifically adapted to address particular 

susceptibilities. 

Integrating NDVI data to this research offers important insights into the health 

of vegetation in the district. It underscores the crucial function of strong vegetative 

cover in preventing soil erosion. This combined approach allows for the creation of 

sustainable land-use planning strategies that are grounded in a comprehensive eval-

uation of both vegetation resilience and terrain characteristics. Additionally, it aids 

in promoting sustainable land-use planning, aligning with Sustainable Development 

Goal 15 (Life on Land). 

Moreover, the Rʹ showed a sharp spatial correlation with the spatial distribution 

of annual rainfall. The districts’ north-eastern zone, which is in high slope zones, 

showed more susceptibility to rainfall erosivity. 

Given the significant implications of soil erosion within the Dehradun district, 

well-designed erosion control measures and tailored conservation initiatives are 

necessary. These efforts align with SDG 6 (Clean Water and Sanitation) goals by
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Fig. 12.6 Spatial distribution of soil loss in Dehradun Districts

reducing soil sedimentation in water bodies and SDG 13 by mitigating climate-

induced risks. 

The district and surrounding areas must necessitate comprehensive and sustain-

able land by using planning initiatives to safeguard the long-term vitality of ecosys-

tems, human communities, agriculture, and water resources. This highlights the 

urgent need for a comprehensive perspective on the far-reaching impacts of soil 

erosion, calling for a unified strategy that harmonizes environmental conservation 

with community resilience and sustainable development goals. 

To address these vulnerabilities, targeted conservation strategies must be imple-

mented to focus on the most affected areas. For instance, forest covers can mitigate 

soil erosion by enhancing soil stability and reducing runoff. Additionally, integrating 

advanced geospatial methodologies, such as those utilizing cloud-based platforms 

like Google Earth Engine, can facilitate real-time monitoring and assessment of soil 

erosion dynamics. 

Furthermore, community engagement and education are vital in promoting 

sustainable land management practices. By fostering awareness about the impacts 

of soil erosion and the importance of conservation efforts, local communities can 

contribute to enhancing ecosystem resilience. Ultimately, a concerted effort that 

combines scientific research with community involvement will be essential for devel-

oping effective strategies to combat soil erosion in Dehradun, thereby ensuring the 

sustainability of its natural resources for future generations. 

Dehradun’s unique geographical features, including its mountainous terrain and 

significant annual rainfall exceeding 3000 mm, further influence its soil erosion
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dynamics. The district has historically been known for its agricultural productivity, 

including litchi orchards and tea gardens; however, rapid urbanization since its desig-

nation as Uttarakhand’s interim capital in 2000 has led to significant changes in land 

use and increased pressure on soil resources. Understanding these dynamics is crucial 

for developing effective strategies to mitigate soil erosion and promote sustainable 

land management practices in Dehradun. 

Finally, this study enhances soil erosion assessment by integrating RUSLE with 

Google Earth Engine (GEE), creating a scalable and cloud-based approach. A key 

innovation of this research is the dynamic inclusion of the NDVI for the cropping 

management factor (C). This allows for the consideration of seasonal variations in 

vegetation and facilitates the efficient handling of large-scale geospatial datasets. 

These advancements make the methodology suitable for steep and ecologically 

sensitive terrains like Dehradun. In contrast to previous studies conducted in the 

Indian Himalayas and Nepal (e.g., George et al. 2021; Uddin et al. 2016), which 

often utilized coarse spatial resolutions, this research offers finer-scale insights that 

capture variations within grids. This increased granularity enhances the utility of 

the findings for localized conservation planning. On a global scale, this scalable 

framework serves as a replicable tool for regions prone to climatic extremes and 

rapid land-use changes, contributing to the Sustainable Development Goals (SDGs), 

particularly SDG 13 (Climate Action) and SDG 15 (Life on Land). However, the 

study has its limitations. The lack of extensive field validation, such as erosion plots 

or sediment deposition studies, highlights the need for future research to verify the 

model outputs empirically. Employing higher-resolution spatial data and conducting 

sub-watershed analyses could further refine the predictions. Explicitly modeling 

anthropogenic factors, including urbanization and deforestation, is another area that 

requires improvement. Expanding the study area or integrating machine learning for 

dynamic hotspot detection could enhance the methodology’s applicability. Further-

more, combining RUSLE with hydrological and sediment transport models would 

provide a more comprehensive understanding of erosion dynamics. The findings 

also lead to relevant policy recommendations, such as implementing afforestation 

in high-erosion zones, promoting sustainable land-use planning, and establishing 

community-based conservation programs. Aligning these measures with national 

policies and SDGs will foster long-term environmental sustainability and resilience 

against challenges related to soil erosion. 

12.7 Conclusion and Future Directions 

This study offers valuable insights for local stakeholders in Dehradun, including 

urban planners, policymakers, conservationists, and agricultural managers. The study 

facilitates targeted interventions such as afforestation, soil stabilization, and sustain-

able farming practices by utilizing geospatial analysis to identify high-risk soil 

erosion zones. Integrating Google Earth Engine (GEE) provides a cost-effective, 

scalable tool for continuous soil monitoring, making it accessible for local agencies
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with limited resources. The immediate benefits of these efforts include improved 

land management decisions, reduced soil erosion, and minimized sediment deposi-

tion in rivers and reservoirs, essential for maintaining water quality and agricultural 

productivity. 

Soil erosion is a significant challenge in Dehradun, a city characterized by its 

complex terrain, heavy rainfall, and rapid land-use changes. This research high-

lights the urgent need for a comprehensive strategy in land-use planning and soil 

conservation, considering crucial factors such as topography, land cover, soil erodi-

bility, and rainfall erosivity. The study’s findings reveal an alarming spatial distri-

bution of soil loss in Dehradun, except in areas with rich vegetation and green 

cover, where soil erosion is considerably less. This extreme rate of soil deple-

tion has far-reaching consequences, including heightened vulnerability to land-

slides and increased chances of floods, particularly in areas with steep gradients. 

Addressing soil erosion and its consequences in hilly regions such as Dehradun, 

prone to natural processes such as earthquakes, landslides, and extreme precipita-

tion, can enhance resilience against climate-induced hazards by promoting adaptive 

stormwater management strategies that align with SDG 13. Thus, through this study, 

we suggest several key measures to improve soil management practices in Dehradun 

for sustainable land use management: 

• Future work should leverage advanced technologies, such as real-time geospatial 

tools, machine learning, remote sensing, and cloud platforms, to monitor, predict, 

and map soil erosion hotspots more precisely. 
• Detailed soil characterization is needed to develop site-specific interventions 

based on soil erodibility. The effectiveness of bioengineering solutions like vetiver 

grass and geotextiles for slope stabilization should also be explored. 
• Participatory programs are crucial for involving local communities in sustain-

able land management, which addresses the goals of SDG 17. Public awareness 

campaigns are important to highlight the socio-economic impacts of soil erosion 

and the benefits of maintaining vegetative cover. 
• Stronger policies are needed to regulate deforestation and promote afforestation 

in at-risk areas. By combating land degradation and conserving biodiversity, these 

policies will promote the life-on-land goals of SDG 15. Land-use planning should 

balance urban development and expansion with ecosystem conservation (SDG 

11). 
• Studies need to investigate the total soil loss in Dehradun due to climate change 

and changing rainfall patterns, which impact soil erosion through changing rainfall 

patterns and, hence, increased run-off. Therefore, proper channeling of stormwater 

management must be directed to prevent contamination of clean water (Dhakal 

and Chevalier, 2016), with strategies focusing on efficiently handling stormwater 

run-off. 

Addressing these research areas will enhance resilience against soil erosion, 

promote sustainable development, and protect Dehradun’s natural resources for the 

future while contributing holistically to SDG’s goals for a sustainable future for 

Dehradun.
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Given Dehradun’s rapid urbanization and steep topography, strategic land-use 

planning is crucial for mitigating soil erosion. Recommendations include limiting 

construction in high-slope and erosion-prone areas and establishing buffer zones 

around rivers to lessen the impacts of sedimentation. Nature-based solutions, which 

incorporate green infrastructures such as rain gardens, bioswales, and permeable 

pavements, can effectively manage stormwater run-off. Successful initiatives inspire 

these solutions in the USA (e.g., Portland’s Green Streets Program) and Europe (e.g., 

Copenhagen’s Blue-Green Infrastructure). Also, promoting afforestation and sustain-

able agriculture is essential. This involves encouraging native vegetation in high-

erosion areas and implementing practices such as contour farming, terracing, and 

cover crops for soil conservation. Lastly, community engagement is vital for raising 

awareness of soil erosion’s socio-economic impacts and involving local communities 

in conservation efforts. These measures can balance urban development and environ-

mental sustainability by aligning with the best global practices, ensuring Dehradun’s 

long-term ecological resilience. 
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Chapter 13 

Genus Fissidens Hedw. (Fissidentaceae) 
in the Eastern Ghats, India: Diversity, 

Distribution and Remote Sensing 
Prospects 

Priyanshu Srivastava and Ashish Kumar Asthana 

Abstract A study on the moss flora of the Eastern Ghats, has documented the occur-

rence of eleven taxa of the genus Fissidens Hedw., namely Fissidens intromarginat-

ulus Bartr., Fissidens pulchellus Mitt., Fissidens sylvaticus Griffith., Fissidens taxi-

folius Hedw., Fissidens crenulatus Mitt., Fissidens crenulatus var. tityalyanus (Muell. 

Hal.) Gangulee, Fissidens ceylonensis Doz. and Molk., Fissidens orishae Gangulee, 

Fissidens flaccidus Mitt., Fissidens bryoides Hedw. and Fissidens bryoides Hedw. 

subsp. schimidii (Müll. Hal.) Nork. These taxa are distributed across ten localities 

of Odisha (Kalinga, Kantia, Berbera-Rajin, Buduli, Orchidarium, Kollah, Gurguria 

Research Station, Lanjighosra, Bureakhata, Joranda Falls), five in Andhra Pradesh 

(Katiki Waterfalls, Bhairav Kona, Sunkarimetta, Galikonda, Rajeev Gandhi Wildlife 

Sanctuary), seven in Tamil Nadu (Kolli Hills, Kalrayan Forest Reserve, Bodamalai 

Forest Reserve, Javadi Hills, Sirumalai Hills, Yercaud, Rose Garden and one locality 

in Karnataka region i.e. Malai Mahadeshwara Wildlife Sanctuary. Among these, 

Fissidens pulchellus is newly reported from the eastern Ghats. The species exhibit 

diverse ecological preferences, with eight being terrestrial, four growing on rocks, 

and three as epiphytes. This study underscores the importance of remote sensing 

technologies, such as high-resolution satellite imagery and vegetation indices, for 

mapping moss habitats and identifying regions with favorable microclimatic condi-

tions. Such interactive approaches can significantly enhance the understanding and 

conservation of Fissidens species in the Eastern Ghats. 
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13.1 Introduction 

The study region, known as the Eastern Ghats, is located between 11º 30ʹ and 22º N 

latitude and 76º 50ʹ and 86º 30ʹ E longitude, and includes parts of northern Odisha, 

Andhra Pradesh, Tamil Nadu, and parts of Karnataka. The study region has a tropical 

monsoon climate, receiving rainfall from both the South-West monsoon and the 

North-East receding monsoon. The average annual temperature in Odisha is from 24 

to 34 °C, whereas in Andhra Pradesh it ranges from 13 to 45 °C and in Tamil Nadu it 

goes from 14 to 32 °C. Red soil, black soil, laterite soil and alluvial soil are the most 

frequent soil types in the Eastern Ghats. The altitude of the Eastern Ghats varies due 

to fragmented hills. 

Family Fissidentaceae with 67 taxa was listed from India by Lal (2005) has 

isobilateral and vaginant lamina which represent true leaf (Brown 1819) belongs to 

order Dicranales. The family consists of a single genus with more than 450 species 

(Stone 2012), divided in to subgenera and sections by Müller (1848, 1900). Note-

worthy contribution on Fissidentaceae from time to time was provided by Norkett 

(1969), Gangulee (1969, 1972), Iwatsuki (1969, 1980), Pursell (1982), Stone (1991), 

Bruggeman-Nannenga and Pursell (1995), Zhang et al. (1998), Dabhade (1998), Nair 

et al. (2005) etc.  

Several studies have employed remote sensing techniques to analyze ecological 

changes in the Eastern Ghats. Jayakumar et al. (2002) mapped forest changes in 

Kolli Hills (1990–1999) using remote sensing and GIS, identifying significant forest 

losses and areas vulnerable to degradation, aiding conservation efforts. Sakthivel 

et al. (2010) assessed soil erosion in the Kalrayan Hills, Eastern Ghats, using similar 

techniques, pinpointing highly erosion prone areas like Karnelli, Uppur and Patti-

valavu and suggesting targeted conservation measures. Ramachandran et al. (2016) 

highlighted discrepancies between satellite-based forest cover assessments and forest 

soil quality index analysis, revealing significantly higher forest degradation (42.4%) 

in the southern Eastern Ghats compared to the reported 1.8%. 

Integrating remote sensing data with taxonomic approaches holds great potential 

for enhancing our understanding of moss distribution and ecology in the Eastern 

Ghats, offering a comprehensive framework for monitoring habitat quality and 

addressing the impacts of environmental change. This synthesis of advanced geospa-

tial tools and ecological research could improve biodiversity assessments and support 

targeted conservation planning in this biodiversity rich region. 

13.2 Materials and Methods 

The specimens were collected during the years 2014, 2015, 2016 respectively from 

different localities of Eastern Ghats region of Odisha, Andhra Pradesh and Tamil 

Nadu covering an altitudinal range of 106 to 1406 m. The specimens were collected 

from terrestrial habitats such as rocks, soil etc. and from tree bark and have been
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Fig. 13.1 Map showing study sites (Tamil Nadu, Andhra Pradesh and Odisha) 

deposited in the Bryophyte Herbarium, NBRI, Lucknow (LWG), India. The area 

covered under eastern Ghats and the major sites of plant collection has been shown 

in the Map (Fig. 13.1). The samples were carefully examined, and the taxonomic 

findings were noted. 

13.3 Results 

Plant samples gathered from various ecological habitats across the states- Odisha, 

Andhra Pradesh and Tamil Nadu have been meticulously studied. Detailed analysis 

of their morphological and anatomical characteristics was conducted to accurately 

determine and validate the taxonomic classification of each species. This compre-

hensive investigation aimed to authenticate the identity and status of these taxa, 

contributing valuable insights into their diversity and systematics. Furthermore, inte-

grating remote sensing technologies with this study offers promising future prospects 

for monitoring bryophyte habitats, assessing environmental changes, and enhancing 

conservation strategies.
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Key to the species of Fissidens at Eastern Ghats 

1. Limbidium present 2 

Limbidium absent 3 

2. Sub-marginal limbidium present at proximal end F. intromarginatulus 

Sub-marginal limbidium absent 4 

3. Leaf margin dentate proximally F. pulchellus 

Leaf margin not dentate proximally 5 

4. Costa excurrent 6 

Costa ending below apex 7 

5. Presence of glandular protuberance on stem, sheathing 

lamina closed type 

F. sylvaticus 

Absence of glandular protuberance on stem, sheathing 

lamina open 

F. taxifolius 

6. Limbidium covering entire sheathing lamina F. crenulatus 

Limbidium covering 1/2 length around vaginant lamina F. crenulatus var. tityalanus 

7. Limbidium breaks down few cells at proximal as well as 

distal end of Vaginant lamina 

F. ceylonensis 

Limbidium covering almost of Sheathing lamina 8 

8. Limbidium covering 2/3rd of sheathing lamina F. orishae 

Limbidium covering all vaginant, apical and dorsal lamina 9 

9. Limbidium 2–3 rowed F. flaciddus 

Limbidium 1–4 rowed 10 

10. Leaves oblong-lingulate F. bryoides 

Leaves ovate-lanceolate F. bryoides subsp. schimidii 

1. Fissidens intromarginatulus Bartr. in Rev. Bryol. Lichen., 23: 242. 1954. 

Plants small sized, lax, gregarious, stem erect, about 6 mm, unbranched; axillary 

hyaline nodule absent. Leaves not curled when dry, yellowish-green, 8–12 pairs of 

leaves, aggregated toward apex, small and lax near base, equally broad from base to 

apex, oblong-lingulate, 1.4–2.0 × 0.3–0.4 mm; Dorsal lamina having rounded base 

ending on stem; sheathing lamina unequal, open type; B/L = 20/100, S/L = 60–100; 

limbidium incomplete of (2–3 layered) elongated cells restricted to sheathing lamina, 

presence of sub-marginal limbidium proximally; Leaf apical cells rounded, 7.5–10 

× 3.7–6.2 µm, median cells rounded-hexagonal, 12.5–15 × 7.5–8 µm, basal cells 

irregular hexagonal, 10–25 × 7.5 µm. Sporophyte not seen. 

Range of Distribution: Asia [Myanmar, East Nepal, India]. 

Distribution: INDIA: Central India; Eastern Ghats [Odisha]; Eastern Himalaya 

[West Bengal (Darjeeling)]; Western Himalaya [Uttarakhand (Dehradun)]; Western 

Ghats. 

Habitat: Soil.



13 Genus Fissidens Hedw. (Fissidentaceae) in the Eastern Ghats, India … 267

Additional Specimen Examined: Odisha, Ganjam Dist., Kalinga, alt ca. 610 m, 

on soil, 24.10.1959, leg.?, Det. H.C. Gangulee, (3/1) 9-3 (CAL). 

2. Fissidens pulchellus Mitt. in Musc. Ind. Or.: 140. 1859. 

Plants small sized, caespitose, pale green, stem erect, about 5 × ± 2 mm, unbranched; 

axillary hyaline nodules not present. Leaves strongly curled when dry, 12–15 pairs 

of leaves, oblong-lanceolate, ± 1.2 × ±  0.30 mm, apiculate; Dorsal lamina slightly 

decurrent ending on nerve; sheathing lamina usually unequal (open); B/L = 25/ 

100, S/L = 50/100; Limbidium not present; margin denticulate with sharp cells on 

border; costa may be percurrent, ending below apex or excurrent in a short apiculus,; 

Laminar apical cells of leaves irregularly quadrate-hexagonal, ± 11.4 × 5.7–7.6 µm, 

median cells quadrate-hexagonal, 7.6–9.5× 7.6 µm, basal cells quadrate- hexagonal, 

11.4–15.2 × 7.6 µm. Sporophyte not seen. 

Range of Distribution: Asia [East Nepal, India]. 

Distribution: INDIA: Central India [Amarkantak]; Eastern Ghats [Andhra 

Pradesh, Karnataka, Odisha, Tamil Nadu]; Eastern Himalaya [West Bengal 

(Darjeeling)]; Western Ghats [Kerala, Kanyakumari]. 

Habitat: Tree barks, Soil, Rocks. 

Specimens Examined: Tamil Nadu, Namakkal, Kolli Hills, alt ca. 1182 m, 

Epiphytic, 14.4.2014, leg. A.K. Asthana and Party, 256065C (LWG); Salem, 

Kalrayan Forest Reserve, Karmandurai, Giant Orchard, alt ca. 789 m, on bricks, 

15.4.2014, 256142 (LWG); Bodamalai Forest Reserve, alt ca. 270 m, on rocks, 

16.4.2014, 256165 (LWG); soil covered rocks, 16.4.2014, 256168 (LWG); 256169 

(LWG); on soil, 16.4.2014, 256171 (LWG); Tiruvannamalai, Javadi Hills, alt ca. 

792 m, on soil, 17.4.2014, 257171B (LWG); on logs, 17.4.2014, 257177 (LWG); on 

soil, 17.4.2014, 257187B (LWG); on rocks, 17.4.2014, 257192 (LWG); 257193A 

(LWG); 257200 (LWG); Dindigul, Sirumalai Hills, alt ca. 1046 m, Epiphytic, 

18.4.2014, 257234C (LWG); alt ca. 1070 m, on soil, 18.4.2014, 257280 (LWG); 

Epiphytic, 18.4.2014, leg A.K. Asthana and Party, 257281 (LWG); Karnataka, Cham-

rajanagar, Kollegal, Malai Mahadeshwara Wildlife Sanctuary, alt ca. 312 m, on 

soil, 16.4.2014, leg A.K. Asthana and Party, 256184B (LWG); 256187A (LWG); 

Andhra Pradesh, Prakasam, Bhairavkona, alt ca. 305 m, on rocks, 12.3.2015, leg A.K. 

Asthana and Party, 258230 (LWG); alt ca. 361 m, on soil covered rocks, 12.3.2015, 

258234 (LWG); Epiphytic, 12.3.2015, 258235 (LWG); rocks, 12.3.2015, 258238 

(LWG); Visakhapatnam, Araku Valley, Sunkarimetta, alt ca. 1161 m, Epiphytic, 

16.3.2015, 258327B (LWG); alt ca. 1164 m, Epiphytic, 16.3.2015, 258345A (LWG); 

rocks, 16.3.2015, 258348 (LWG); Galikonda, alt ca. 1246 m, on wet rocks, 16.3.2015, 

258361B (LWG); 258365C (LWG); alt ca. 1181 m, on rocks, 17.3.2015, 300045B 

(LWG); Odisha, Mayurbhanj, Similipal Tiger and Biosphere Reserve, near Orchi-

darium, alt ca. 593 m, on soil, 1.4.2016, leg A.K. Asthana and Party, 300663B (LWG); 

Epiphytic, 1.4.2016, 300671C (LWG); 300674B (LWG); on rocks, 1.4.2016, 300675 

(LWG); 300676B (LWG); on soil covered rocks, 1.4.2016, 300677C (LWG); Kollah, 

alt ca. 793 m, Epiphytic, 2.4.2016, 300687A (LWG); Orchidarium, alt ca. 593 m, 

on rocks, 3.4.2016, 300812 (LWG); Gurguria Research Station, alt ca., Epiphytic, 

3.4.2016, 300846C (LWG); Lanjighosra, alt ca. 642 m, on rocks, 3.4.2016, 300861B
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(LWG); Gajapati, Mahendragiri Forest Reserve, Bureakhata, alt ca. 1051 m, on rocks, 

05.04.2016, 300935 (LWG). 

3. Fissidens sylvaticus Griffith. in Cal. J. Nat. Hist., 2: 507. 1842. 

Plants minute, gregarious, yellowish-brown, stem simple, erect, ± 10 mm, 

unbranched; presence of glandular protuberance of 6–7 turgid cells. Leaves curled 

when dry, 12–14 pairs of leaves, oblong-lanceolate to broader oblong-lingulate, 1.5– 

1.8 × 0.2–0.27 mm, acuminate apex, curled distally; Dorsal lamina ending on nerve 

base; sheathing lamina equal, closed; B/L = 15/100, S/L = 55.5/100; Limbidium not 

present; margin crenulate due to projection of cell; costa ends slightly below tip to 

slightly percurrent; leaf apical cells quadrate-hexagonal, 5–7.5 × ±  3.7 µm, median 

cells quadrate, hexagonal, 7.5–12.5 × 5–7.5 µm, basal cells irregular, sub-quadrate 

to hexagonal, 12.5–15 × 5–7.5 µm. Sporophyte not seen. 

Range of Distribution: Africa [Algeria, Madagascar]; Asia [Borneo, East Nepal, 

Celebes, Ceylon, Hongkong, Japan, Java, Myanmar, Philippines, Sumatra, Thailand, 

Vietnam,]; Oceania [New Guinea, New Zealand, Samoa]. 

Distribution: INDIA: Andaman Is.; Central India [Madhya Pradesh (Pachmarhi)]; 

Eastern Ghats [Odisha, Tamil Nadu]; Eastern Himalaya [West Bengal (Darjeeling)]; 

North-East India [Assam, Meghalaya (Khasi Hills)]; Gangetic plains [Bihar, 

Chottanagpur, West Bengal]; Western Ghats [Maharashtra (Bombay, Khandala), 

Tamil Nadu (Nilgiri, Palni, Coorg)]; Western Himalaya [Uttarakhand (Kathgodam, 

Kumaon)]. 

Habitat: Soil. 

Additional Specimen Examined: Tamil Nadu, Tinnevelly Dist., Kathalaimalai, alt 

ca. 914 m, habitat.?,?.05.1927, leg.?, Det. A.H. Norkett, (3/1) 33-5 (CAL); Odisha, 

Cuttack, Jajpur, Vill. Kantia, alt ca.? on soil, 28.10.1958, leg.?, Det by. E.B. Bartram, 

33(3/1)-1 (CAL). 

4. Fissidens taxifolius Hedw. in Sp. Musc.:155. 1801. 

Plants small, gregarious, yellow-green, stem erect, up to 5 × 2 mm, unbranched; 

axillary nodules not present. Leaves erectopatent, curled circinately at top when 

dry, 10–13 pairs of leaves, oblong-lingulate, broadly acuminate, 0.80–1.50 × 0.20– 

0.50 mm; Dorsal Lamina ending on nerve; sheathing lamina usually of open type 

(unequal); B/L = ±  33.3/100, S/L = 53.3/100; Limbidium not present; margin 

crenulate or somewhat entire; costa prominent, ending below apex; Leaf apical cells 

rounded-quadrate, tumescent,± 15.2× ±  7.6 µm, median cells quadrate-hexagonal, 

± 7.6 × ±  5.7 µm, basal cells quadrate-hexagonal, about 11.4 × up to 7.6 µm. 

Sporophyte not seen. 

Range of Distribution: Africa [Canary Island, Madeira, North Africa]; Asia 

[Central Asia, Caucasus, East Nepal, Persia, Korea, Sakhalin, Japan, Ryukyus]; 

Europe [Azores]; North, central and south America. 

Distribution: INDIA: Andaman Is.; Eastern Ghats [Tamil Nadu]; Eastern 

Himalaya [West Bengal (Darjeeling)]; Gangetic Plains; Western Himalaya [Uttarak-

hand (Ranikhet, Nainital), Himachal Pradesh (Shimla), Kashmir]. 

Habitat: Rocks.
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Specimen Examined: Tamil Nadu, Salem, Yercaud, alt ca. 1216 m, on soil covered 

rocks, 13.4.2014, leg A.K. Asthana and Party, 254940A (LWG). 

5. Fissidens crenulatus Mitt. in Musc. Ind. Or.: 140. 1859. 

Plants minute, gregarious, yellowish green, stem erect, ± 5 × 1.2 mm, unbranched; 

axillary hyaline nodule absent. Leaves curled when dry, up to 10 pairs of leaves, 

oblong-lanceolate to oblong-lingulate, ± 1 × ±  0.35 mm; Dorsal lamina ending 

on nerve, narrower at base; sheathing lamina usually unequal (open type); B/L = 

35/100, S/L = 60/100; Semi-limbidium of 2–3 layered bordered over sheathing 

lamina; margin serrulate; costa excurrent in a short apiculus; leaf apical cells rounded-

hexagonal, multipapillate up to 7.6 × 5.7 µm, median cells irregular, hexagonal, 

about 7.6×4.5 µm, basal cells sub-rectangular, up to 9.5× about 7.6 µm. Sporophyte 

not seen. 

Range of Distribution: Asia [East Nepal, India, Upper Myanmar]. 

Distribution: INDIA: Central India; Eastern Ghats [Andhra Pradesh, Odisha]; 

Gangetic Plains. 

Habitat: Tree barks, Rocks. 

Specimen Examined: Andhra Pradesh, Visakhapatnam, Araku Valley, Katiki 

waterfalls, alt ca. 914 m, on rocks, 17.3.2015, leg A.K. Asthana and Party, 300068 

(LWG); alt ca. 954 m, wet rocks, 17.3.2015, leg A.K. Asthana and Party, 300074 

(LWG); Odisha, Mayurbhanj, Similipal Tiger and Biosphere Reserve, Joranda Falls, 

alt ca. 761 m, Epiphytic, 2.4.2016, leg A.K. Asthana and Party, 300776 (LWG); 

Orchidarium, alt ca. 593 m, Epiphytic, 3.4.2016, 300814A (LWG). 

6. Fissidens crenulatus var. tityalyanus (Muell. Hal.) Gangulee in Mosses E. India 

2:506. 1971. 

Plants small sized, yellowish-green, stem erect, 4 mm long, unbranched; axillary 

hyaline nodules absent. Leaves with 8–10 pairs, oblong-lingulate, 1.1–1.2 × ±  

0.25 mm; Dorsal lamina ending on stem, decurrent; sheathing lamina equal (closed), 

0.6–0.75 mm; B/L = 20.8/100, S/L = 62.5/100; semilimbidium (1–3 row) present 

in sheathing lamina region leaving sheathing lamina apex; margin crenulate due 

to mamillae; costa excurrent to ± percurrent; Leaf apical cells rounded-hexagonal, 

conical mamillae, 7.5–12.5 × 6.2–7.5 µm, median cells hexagonal, 10–12.5 × 5 µm, 

basal cells elongated irregular, quadrate, 10–20 × ±  5 µm. Seta reddish in color; 

capsule elongate, cylindric. 

Range of Distribution: Asia [India, Nepal]. 

Distribution: INDIA: Central India; Eastern Ghats [Odisha]; Gangetic plains 

[North Bengal, West Bengal]. 

Habitat: Soil. 

Additional Specimens Examined: Odisha, Puri Dist., Berbera-Rajin Road, alt ca. 

244 m, on red laterite soil, 20.10.1959, Leg.?, Det. H.C. Gangulee, (3/1)4-4 (CAL); 

(3/1)4-5 (CAL); Ganjam Dist., Buduli, Near Bhanhanagar, alt ca. 122 m, on soil, 

24.10.1959, leg.?, Det. H.C. Gangulee; (3/1)4-6 (CAL). 

7. Fissidens ceylonensis Doz. and Molk. in Ann. Sci. Nat. Bot. Ser.3, 2:304. 1844.



270 P. Srivastava and A. K. Asthana

Plants small to medium sized, gregarious, yellowish green, stem erect, ± 9× 1.2 mm, 

unbranched; axillary hyaline nodules absent. Leaves curled when dry, 12–16 pairs of 

leaves, oblong-lingulate, sudden apiculate from a broader base, 1–1.2 × 0.30 mm; 

Dorsal lamina base rounded, decurrent below; sheathing lamina unequal (open); B/L 

= 30/100, S/L = 60/100; semilimbidium 1 to 3 rows wide below and narrow above 

of elongated cells, cover most of sheathing lamina of all leaves but it breaks down to 

a few parenchymatous at tip and at base; margin crenulate; costa strong, excurrent; 

Apical cells of leaves sub-obscure, rounded-hexagonal, multipapillate (3–4 per cell), 

7.6–15.2 × 7.6 µm, median cells hexagonal multipapillate (4–5 papillae) in cell 

wall, 7.6 × 7.6 µm, basal cells irregularly hexagonal, smooth, 7.6–11.4 × 7.6 µm. 

Sporophyte not seen. 

Range of Distribution: Asia: [Borneo, East Nepal, Ceylon, Java, Malay, Philip-

pines, Sumatra, Thailand, Vietnam, Yunnan]; Oceania [New Zealand]. 

Distribution: INDIA: Eastern Ghats [Odisha, Tamil Nadu]; Eastern Himalaya 

[West Bengal (Darjeeling), Sikkim]; Gangetic Plains [West Bengal]; Western Ghats 

[Tamil Nadu (Nilgiri, Palni), Kerala (Trivandrum)]; Western Himalaya. 

Habitat: Soil. 

Specimen Examined: Odisha, Mayurbhanj, Similipal Tiger and Biosphere 

Reserve, Joranda Falls, alt ca. 761 m, on soil, 2.4.2016, leg A.K. Asthana and Party, 

300787 (LWG); 300788 (LWG). 

8. Fissidens orishae Gangulee in Nova Hedwigia, 8:140. 1964. 

Plants small sized, in loose tufts, yellowish-brown, stem erect, 3 mm long, 

unbranched; axillary hyaline nodules absent. Leaves not curled when dry, 6–8 pairs 

of leaves, oblong-lingulate, broader in sheathing region, 0.8–1.1 × 0.25–0.42 mm; 

Dorsal lamina narrowing down at base and vanishing in nerve; sheathing lamina 

unequal or open type; B/L = ±  38.1/100, S/L = ±  63.6/100; imperfect limbidium 

(covering 2/3rd of S.L.) of 2 rows of elongated pellucid cells at sheathing lamina 

base; margin smooth to crenulate; costa ending few cells before apex; leaf apical cells 

mamillose, rounded-quadrate, 10–17.5 × 5–7.5 µm, median cells quadrate, 7.5–10 

× 7.5–8.7 µm, basal cells hexagonal, 10–20 × 7.5–8.7 µm. Seta short, apical, brown, 

1 mm; capsule erect, ovate-cylindrical, ± 0.75 × 0.3 mm in diameter; operculum 

conic-rostrate. 

Distribution: Eastern Ghats [Odisha]; Gangetic plains [West Bengal]. 

Habitat: Soil. 

Additional Specimen Examined: Odisha, Ganjam Dist., Gallery R.F., Buduli, alt 

ca. 122 m, on soil, 24.10.1959, leg.?, Det. H.C. Gangulee, (3/1) 45-1 (CAL) (TYPE). 

9. Fissidens flaccidus Mitt. in Trans. Linn. Soc. London 23:56. 1860. 

Synonym: Fissidens splachnobryoides Broth in Fl. Schutzgeb. Südsee 81. 

1900. 

Plants small sized, light green, stem erect, 2.4 × 1.25 µm, unbranched; axil-

lary nodules not present. Leaves curled when dry, up to 6 pairs of leaves, oblong-

lanceolate, 0.66–0.83 × 0.14–0.21 mm, acuminate; dorsal lamina narrowing down at 

proximal end, wedge shaped; sheathing lamina equal (closed type); limbidium 2–3
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layered, becoming indistinct near base, present all around leaf; margin entire; costa 

thin, ending far below apex; Leaf apical cells rhombic to elliptic ovate, 6.6–10 × 

± 5 µm, median cells rhombic-quadrate, up to 6.6 × 4 µm, basal cells rectangular, 

10–16.6 × ±  6.6 µm. Sporophyte not seen. 

Range of Distribution: Asia [East Nepal, Ceylon, Upper Myanmar, Java, North 

Borneo, Ryukyus, Japan, Philippines, Sri Lanka]; Oceania [New Guinea]. 

Distribution: INDIA: Central India [Madhya Pradesh (Pachmarhi)]; Eastern 

Ghats [Andhra Pradesh]; Eastern Himalaya; Gangetic plains [Lower Bengal], 

Punjab & West Rajasthan [Punjab (Kalka)]; Western Ghats [Maharashtra (Bombay, 

Khandala)]. 

Habitat: Rocks. 

Specimen Examined: Andhra Pradesh, Prakasam, Nemaligundla Ranganayaka 

Swamigundam, alt ca. 300 m, soil covered rocks, 13.3.2015, leg A.K. Asthana and 

Party, 258254 (LWG). 

10. Fissidens bryoides Hedw. in Sp. Musc.:153. 1801. 

Plants small sized, gregarious, yellowish-green, stem erect, up to 4 × 2 mm, 

unbranched; axillary hyaline nodules absent. Leaves not much curled when dry, 

up to 7 pairs of leaves, oblong-lingulate, 1.2 × 0.50 mm, acuminate; Dorsal Lamina 

ending on nerve base; sheathing lamina unequal (open type); B/L = 41.6/100, S/ 

L = 50/100; Limbidium present, yellowish, cartilaginous elongated all around leaf, 

on dorsal lamina Limbidium is single row at tip, 2–3 rowed at base, on sheathing 

lamina Limbidium is 3–4 rowed at base and 2 rowed at apex; margin entire; costa 

yellow–brown, percurrent to slightly excurrent; Leaf apical cells smooth, quadrate, 

chlorophyllose, 7.6–22.8 × 3.8–7.6 µm, median cells smooth, quadrate, 11.4 × 

7.6 µm, basal cells smooth, elongated, 15.2–19 × 7.6–11.4 µm. Sporophyte not 

seen. 

Range of Distribution: Asia [Ceylon, China, East Nepal, India, Japan, Java, Malay, 

Philippines, Siberia, Taiwan]; Europe [Caucasus]; North and Central Africa; North 

and South America. 

Distribution: INDIA: Punjab and West Rajasthan [Rajasthan]; Eastern Ghats 

[Odisha, Tamil Nadu]; Eastern Himalaya; Gangetic Plains [Lower Bengal]; North-

East India [Meghalaya (Khasi Hills), NEFA]; Western Himalayas [Uttarakhand 

(Ranikhet), Himachal Pradesh (Shimla)]; Western Ghats [Tamil Nadu (Nilgiris, 

Coonoor)]. 

Habitat: Tree barks, Soil. 

Specimen Examined: Tamil Nadu, Salem, Yercaud, Rose Garden, alt ca. 1428 m, 

Epiphytic, 13.4.2014, leg A.K. Asthana and Party, 254991D (LWG); Odisha, 

Mayurbhanj, Similipal Tiger and Biosphere Reserve, alt ca. 642 m, on soil, 3.4.2016, 

leg A.K. Asthana and Party, 300873 (LWG). 

11. Fissidens bryoides Hedw. subsp. schimidii (Müll. Hal.) Nork. in Mosses. E. 

India. 2:471. 1971. 

Plants small sized, caespitose, yellowish-green, stem erect, ± 5 mm long, procum-

bent; axillary hyaline nodules not present. Leaves contorted when dry, 7–8 pairs of
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leaves, ovate-lanceolate, tapering down from a wider base, 1–1.8 × 0.27–0.37 mm, 

shortly acuminate; dorsal lamina ending on nerve; sheathing lamina equal (closed 

type); B/L = 20.5/100, S/L = 41.6/100; Limbidium of elongated cells all around 

leaf with 2 rows in dorsal lamina, 1 row near apex, 3–4 rows near sheathing lamina 

and devoid at distal end; margin smooth or entire; costa percurrent to ending below 

apex; leaf apical cells smooth, irregularly quadrate, about 10 × 5–6.2 µm, median 

cells shape, 7.5–8 × ±  7.5 µm, basal cells quadrate to sub-quadrate, 12.5–20 × 

7.5–12.5. Capsule inclined, arcuate, clavate, 0.8 × 0.3 mm. 

Range of Distribution: Africa; Asia [Ceylon, East Nepal, India, Japan, Java, Malay, 

Philippines]. 

Distribution: INDIA: Central India [Jharkhand (Chottanagpur)]; Eastern Ghats 

[Odisha]; Eastern Himalaya [West Bengal (Darjeeling)]; Western Ghats [Karnataka 

(Mangalore), Tamil Nadu (Nilgiris, Palni)]; Western Himalaya [Uttarakhand 

(Ranikhet)]. 

Habitat: Soil. 

Additional Specimen Examined: Odisha, Ganjam Dist., Kalinga, alt ca. 610 m, 

on soil, 24.10.1959, leg.?, Det. H.C. Gangulee, (3/1) 7-4 (CAL). 

13.4 Discussion 

The genus Fissidens Hedw. (Fissidentaceae) is represented by diverse species in 

the Eastern Ghats, India, showcasing unique morphological and ecological charac-

teristics. Among these, five taxa- Fissidens intromarginatulus, Fissidens sylvaticus, 

Fissidens crenulatus var. tityalyanus, Fissidens orishae and Fissidens bryoides Hedw. 

subsp. schimidii were examined from specimens housed at the Central National 

Herbarium, BSI, Kolkata. Notable distinctions include the sub-marginal limbidium 

at the proximal end in F. intromarginatulus, and prominent dentate leaves in F. 

pulchellus. F. sylvaticus was characterized by a glandular protuberance on the stem 

and a closed sheathing lamina type, distinguishing it from F. taxifolius. The complete 

limbidium along the sheathing lamina separated F. crenulatus from its variant F. 

crenulatus var tityalanus. Limbidium pattern also varied between F. ceylonensis, 

where it breaks down at the proximal and distal ends of the vaginant lamina, and F. 

orishae, where it spans the entire sheathing lamina. 

Additionally, advancements in climate science and geospatial technology offer 

new avenues to explore moss ecology in the eastern Ghats. Climate datasets, encom-

passing variations in temperature and rainfall, can illuminate the relationship between 

environmental factors and moss growth patterns. Coupling species distribution 

models with remote sensing data provides a robust framework to predict shifts in 

moss habitats under future climate scenarios, enabling the identification of vulnerable 

zones and ecological refugia. 

Remote sensing techniques, previously utilized to study forest changes in the 

Eastern Ghats, highlights its potential for moss distribution research. For instance, 

studies in Kolli and Kalrayan Hills mapped forest losses and erosion-prone areas



13 Genus Fissidens Hedw. (Fissidentaceae) in the Eastern Ghats, India … 273

using GIS, while discrepancies between soil quality indices and satellite-based forest 

assessments revealed greater forest degradation than earlier reported. Applying such 

tools to moss studies can monitor habitat quality, restoration efforts and biodiver-

sity conservation. Integrating taxonomic insights with remote sensing and climate 

data provides a comprehensive approach to understanding Fissidens distribution, 

predicting its response to climate change, and guiding conservation strategies in the 

ecologically rich Eastern Ghats. 
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Chapter 14 

Bird Diversity, Habitat Degradation, 

and Ecosystem Services Evaluation 

of Bisalpur Wetland, Rajasthan 

Raj Singh, Vara Saritha, and Sachchidanand Singh 

Abstract A wetland ecosystem in a place with high temperatures all year, notably 

in Rajasthan’s arid and semi-arid areas, is critical for preventing water-related chal-

lenges and maintaining ecological balance. Therefore, as an essential home for both 

resident and migratory bird species, Rajasthan’s Bisalpur Wetland contributes signifi-

cantly to the biodiversity of birds. This study observed that the majority of bird species 

at Bisalpur wetland are classified as Least Concern, the existence of Near Threat-

ened and Vulnerable species emphasizes the need for focused conservation efforts, 

according to the IUCN Red List assessment. Migratory species like the Bar-headed 

Goose, Common Pochard, and Northern Pintail highlight the wetland’s biological 

importance as a stopover and wintering location on major migration routes. However, 

it has been identified that such vital ecosystems are constantly being destroyed as 

a result of local human involvement. People in the surrounding areas commonly 

use forest wood for cooking and shelter. Moreover, originating from the construc-

tion of a dam on the Banas River, this wetland supports a variety of ecosystem 

services, including irrigation, fisheries, flood control, and biodiversity conservation. 

Surrounding villages rely heavily on the wetland for fuelwood, water, and agricul-

tural sustenance, while the site also holds significant cultural and religious value 

due to its historic Bisaldeo temple. The wetland fosters biodiversity, with a variety of 

fish, plankton, and avian species enriching its ecosystem. Government environmental 

bodies are required to take action regarding resource depletion and unauthorized resi-

dents in the wetland catchment areas for sustainable management of these precious 

resources. 
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management
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14.1 Introduction 

Wetlands are productive ecosystems representing a transition zone between aquatic 

and terrestrial regions (Scholte et al. 2016; Zhou et al. 2020). It plays an important 

role in sustaining diverse biodiversity, conservation, and nutrient recycling. Wetland 

works as a natural barrier against high tides, drought, and flooding and helps in 

climate change adaptation (Blackwell and Pilgrim 2011; Costa et al. 2024; Londe 

et al. 2024; Rahman et al. 2018). 

However, wetlands are suitable habitats for both local and migratory birds. Birds 

use this ecosystem generally for feeding and breeding purposes (Marasinghe et al. 

2022; Panda et al. 2021). They move from different countries to locate suitable areas 

during distinct seasons. The shallow vegetative region of the wetland supports rich 

molluscans, crustaceans, and fish diversity, which are the primary source of nutritious 

food for water birds (Bhendekar et al. 2024; Qu et al.  2023; Singh and Mishra 2019). 

India’s varied climatic and geographic factors support diverse wetlands, including 

high-altitude lakes in the Himalayas and floodplains in the Gangetic region (Naik 

and Sharma 2022). These diverse environmental conditions support a wide variety of 

wetlands, ranging from small ponds to large lakes, with variations in water quality, 

including fresh, saline, and brackish characteristics (Bachheti et al. 2023; Mishra  

et al. 2024). Thus, Indian wetlands attract a significant number of migratory birds 

each winter (Rajpar et al. 2022). These beautiful birds attract tourists, adding substan-

tially to the nation’s economic value. Also, the rich diversity of birds is an indicator 

of a healthy ecosystem and good water quality (Aarif et al. 2023; Mishra et al. 2023; 

Yadav and Rai 2024). SAC ISRO classified wetland services into four major cate-

gories (Table 14.1), adopted from the International Lake Environment Committee 

Foundation (ILEC), 2007 (12th World Lake Conference (Taal 2007) | International 

Lake Environment Committee | ILEC).

Moreover, these precious resources have continuously been destroyed due to rapid 

urbanization and industrialization. Furthermore, drought and other anthropogenic 

activities pose severe challenges to wetland biodiversity (Let and Pal 2023). Water 

pollution from agricultural runoff, industrial discharge, and untreated sewage lowers 

water quality, endangering aquatic life and disturbing the ecological balance (Fluet-

Chouinard et al. 2023; Xi et al.  2021, 2022). Excessive extraction of marsh vegeta-

tion, frequently utilized for cooking fuel or cattle grazing, causes habitat degradation 

and reduces food and shelter for many species (Kadlec 2020; Sekey et al. 2023). 

Furthermore, excessive irrigation water usage, particularly in agriculturally inten-

sive regions, depletes wetland water levels, putting these ecosystems under further 

stress (Li et al. 2021; Mattson et al. 2024; Pereira et al. 2024). Together, these 

processes contribute to biodiversity loss, affecting both local species and the critical 

ecosystem services that wetlands provide, such as water purification, flood regu-

lation, and carbon sequestration (Ahmad et al. 2024; Hu et al.  2020; Singh et al. 

2025). 

However, this study focused on bird monitoring and assessment of habitat loss 

along interpretation of wetland goods and services at the Bisalpur wetland, Rajasthan,
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Table 14.1 Ecosystem services provided by wetlands 

Regulating services Resource provision 

services 

Supporting services Cultural service 

Aquatic habitat Fuel Primary production Scenic and aesthetic 

values 

Health provision Hydropower Geological formation Spiritual and religious 

value 

Capacity Fiber and wood Nutrient cycling Educational resources 

Drought and flood 

mitigation 

Irrigation and drinking 

water 

Heat energy Historic sites 

Fertile lands Fish Physical structure 

Self-purification 

capacity 

Navigation routes 

Climate mediation 

Diverse food-chain 

Source Data has been compiled from Wetland Atlas (Gupta et al. 2024)

India. This study has the potential to fill key knowledge gaps about the ecological 

dynamics of Bisalpur Wetland. The findings will not only help to develop conserva-

tion plans for bird habitats, but will also provide significant insights into sustainable 

wetland management. 

Objectives of the Study: 

• To assess the diversity of bird species in the Bisalpur Wetland. 
• To evaluate the extent of habitat degradation (impact of human activities on 

wetland). 
• To analyze the goods and services provided by the Bisalpur Wetland. 

14.2 Material and Methods 

14.2.1 Study Area 

The Bisalpur Wetland (bird monitoring site) is located in Tonk district, Rajasthan, 

India, at latitude 25° 55′ 22.14ʺ and longitude 75° 27′ 21.16ʺ (Fig. 14.1). Bisalpur 

Wetland is a man-made wetland formed due to the construction of the Bisalpur Dam 

in the Khamnor hills of the Aravalli range. Construction of the Dam was started in 

1985 and completed in 1996 (World Bank Document). The dam’s water is commonly 

used for irrigation and drinking purposes (Singh et al. 2024). The availability of water, 

along with the beautiful mountainous slopes and greenery, makes this geographical 

region a favorable habitat for both migratory and local birds.
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Fig. 14.1 Study area 

14.2.2 Survey Methods of Birds 

From October to March, avian surveys were conducted in the mornings (6.30–11.00 

AM) and evenings (3.00–5.00 PM). Actual head counts were conducted for bird 

species with very small populations. The study area is categorized into six different 

zones based on habitat preferences by migratory and local birds, as well as the consid-

eration of surrounding vegetation, water availability, and other ecological factors. The 

categorized zones were analyzed throughout the research period, and each zone was 

revisited the following month using a 20 × 50 prismatic field binocular. Regular field 

surveys were conducted at 10-day intervals throughout the study period, with surveys 

avoided on foggy and wet days. Bird species were identified using a field reference 

book called The Book of Indian Birds. Moreover, the eBird checklist has been used 

to compile the common birds’ data (https://ebird.org/home). In addition, information 

on avian status and anthropogenic activity was gathered from the adjacent residential 

area of the marsh.

https://ebird.org/home


14 Bird Diversity, Habitat Degradation, and Ecosystem Services … 279

14.2.3 Monitoring of Major Goods and Services of Bisalpur 

Wetland 

The wetland goods and services data were analyzed and compiled from both 

secondary sources and field surveys. Data collecting for this investigation with the 

help of site visits in different sessions between 2022 and 2024 at many places in 

and around the wetland. Most of the general information, such as the use of fodder, 

fuel wood, use of wetland water, fish food, and other recreational activity data, was 

compiled with local people’s opportunistic interviews. Moreover, people around 

the wetland hesitate to interact with stranger people. Also, we have observed that 

they communicate in their native Rajsthan language, and if they don’t understand 

our question or reply, they simply deny further talk. Therefore, we have mostly 

taken opportunistic interviews. At a field visit on February 11, 2024, we recorded 

several responses at the wetland site through group discussions with interested people 

(Fig. 14.2a). These respondent people were assembled that day in a Mahapanchayat 

(Fig. 14.2b). The Mahapanchayat (gathering for discussion on regional or commu-

nity matters) was organized by local leaders and villagers. The participating people in 

Mahapachayat raised their demands regarding solving the issue related to irrigation 

water and profitable value for agricultural products in front of the state government 

and Dam management authority. 

Fig. 14.2 a Local respondent, b gathering of local people for Mahapanchayat
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14.3 Results and Discussion 

The bird diversity survey conducted at Bisalpur Wetland provided a detailed overview 

of the bird species in their catchment area. The species were classified into groups like 

waterfowl, pigeons, shorebirds, and others, with reference to the eBird field checklist 

(Bisalpur Dam Water Catchment Area, Tonk, Rajasthan, India, eBird Hotspot). This 

method helped categorize the birds and understand their conservation status and any 

potential threats to their populations. 

14.3.1 Water Birds Status 

A wide variety of waterfowl species was observed at the Bisalpur Wetland 

(Table 14.2). It highlights the abundance of fauna in the Bisalpur catchment area. 

However, the recorded species, such as the Bar-headed Goose, is classified as “Least 

Concern” on the IUCN Red List, but its population is declining. This decline raises 

concerns about the species’ long-term survival. The Common Pochard sees a similar 

pattern of declining populations, likewise classified as “Vulnerable,” highlighting the 

necessity for concentrated conservation initiatives. On the other hand, the Common 

Shelduck seems to be doing very well in its wetland home, as its population trend 

IUCN status shows positive. Additionally, groups of species like the Cotton Pygmy-

Goose are observed in the study area, showing that the wetland is good for many 

types of waterfowl.

14.3.2 Pigeons and Doves 

The wetland supports common species like the Eurasian Collared Dove (Strep-

topelia decaocto) and Rock Pigeon (Columba livia), both of which are classi-

fied as “Least Concern” (Table 14.3). However, these birds face falling population 

trends globally, which could be attributed to habitat changes or other environmental 

stresses. Monitoring these species is critical for learning how they adapt to changing 

environments.

14.3.3 Cuckoos 

Several cuckoo species, including the Greater Coucal (Centropus sinensis), were seen 

(Table 14.4). All cuckoo species recorded are rated as “Least Concern” and show 

stable populations in the IUCN list, indicating that they are not currently endangered.



14 Bird Diversity, Habitat Degradation, and Ecosystem Services … 281

Table 14.2 Diversity of waterfowl at Bisalpur Wetland 

S. No. Common name Scientific name Diversity 

status 

IUCN red list 

status 

IUCN 

population 

trend 

1 Bar-Headed Goose Anser indicus Occ Least concern Decreasing 

2 Common Pochard Aythya ferina C Vulnerable Decreasing 

3 Common 

Shelduck 

Tadorna tadorna Lc Least concern Increasing 

4 Cotton 

Pygmy-Goose 

Nettapus 

coromandelianus 

Lc Least concern Stable 

5 Eurasian Wigeon Mareca penelope Occ Least concern Decreasing 

6 Ferruginous Duck Aythya nyroca Lc Near 

threatened 

Decreasing 

7 Gadwall Mareca strepera C Least concern Increasing 

8 Garganey Spatula 

querquedula 

Occ Least concern Decreasing 

9 Graylag Goose Anser anser Occ Least concern Increasing 

10 Green-Winged 

Teal 

Anas crecca Lc Least concern Unknown 

11 Indian Spot-billed 

Duck 

Anas 

poecilorhyncha 

Vc Least concern Decreasing 

12 Knob-Billed Duck Sarkidiornis 

melanotos 

Lc Least concern Decreasing 

13 Lesser 

Whistling—Duck 

Dendrocygna 

javanica 

Lc Least concern Decreasing 

14 Mallard Anas 

platyrhynchos 

C Least concern Increasing 

15 Northern Pintail Anas acuta A Least concern Decreasing 

16 Northern Shoveler Spatula clypeata Lc Least concern Decreasing 

17 Red-Crested 

Pochard 

Netta rufina C Least concern Unknown 

18 Ruddy Shelduck Tadorna 

ferruginea 

Lc Least concern Unknown 

19 Tufted Duck Aythya fuligula Lc Least concern Stable 

Note A = Abundant (100 birds), Vc = Very common (51–100), C = Common (11–50), Lc = Less 

common (1–10), Occ = Occasional (one or more stray birds spotted once in a while)

This is a good indicator since it indicates that the wetland and other habitat regions 

maintain a balance for species requiring certain ecological conditions.



282 R. Singh et al.

Table 14.3 Diversity of Pigeons and Doves at Bisalpur Wetland 

S. No. Common name Scientific name Diversity status IUCN red list 

status 

IUCN 

population 

trend 

1 Eurasian 

Collared-Dove 

Streptopelia 

decaocto 

Lc Least concern Decreasing 

2 Red 

Collared-Dove 

Streptopelia 

tranquebarica 

Lc Least concern Decreasing 

3 Rock Pigeon Columba livia Lc Least concern Decreasing 

4 Spotted Dove Spilopelia 

chinensis 

Lc Least concern Increasing

Table 14.4 Diversity of Cuckoos at Bisalpur Wetland 

S. No. Common name Scientific 

name 

Diversity status IUCN red list 

status 

IUCN 

population 

trend 

1 Common 

Hawk-Cuckoo 

Hierococcyx 

varius 

Lc Least concern Stable 

2 Greater Coucal Centropus 

sinensis 

Lc Least concern Stable 

3 Pied Cuckoo Clamator 

jacobinus 

Lc Least concern Stable 

4 Sirkeer Malkoha Taccocua 

leschenaultii 

Lc Least concern Stable 

14.3.4 Rails, Gallinules, and Allies 

The wetland is home to birds such as the White-breasted Waterhen (Amaurornis 

phoenicurus) and the Eurasian Coot (Fulica atra). Although the populations of these 

species are stable, additional information is required to comprehend the popula-

tion patterns of others, like the White-breasted Waterhen (Table 14.5). If further 

conservation measures are required, this will be ascertained with the aid of ongoing 

monitoring.

14.3.5 Shorebirds 

Table 14.6 showing the diversity of shorebirds at Bisalpur Wetland gives information 

about the various species found in the area, their conservation status, and global popu-

lation trends. Most shorebird species, including the Black-winged Stilt, Common 

Greenshank, and Green Sandpiper, are classified as “Least Concern” on the IUCN
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Table 14.5 Diversity of Rails, Gallinules, and Allies at Bisalpur Wetland 

S. No. Common name Scientific 

name 

Diversity status IUCN red list 

status 

IUCN 

population 

trend 

1 Brown Crake Zapornia 

akool 

Lc Least concern Unknown 

2 Eurasian Coot Fulica atra Lc Least concern Stable 

3 Eurasian 

Moorhen 

Gallinula 

chloropus 

Lc Least concern Stable 

4 White-breasted 

Waterhen 

Amaurornis 

phoenicurus 

Lc Least concern Unknown

Red List, indicating that they are not in imminent danger of extinction. The popu-

lation patterns for these species differ, with some, such as the Black-winged Stilt 

and Green Sandpiper, exhibiting an increase in numbers, which is a good indicator 

of the wetland’s ecology. However, certain species, such as the Common Sand-

piper, Common Snipe, and Indian Thick-knee, are suffering population decreases, 

indicating potential challenges to their survival, probably due to habitat loss or envi-

ronmental stress. The Great Thick-knee, which is classified as “Near Threatened,” 

likewise has a declining population, underlining the need for conservation efforts 

to prevent further loss. Population trends remain unknown for several species, such 

as the Common Redshank, Red-wattled Lapwing, and Small Pratincole, indicating 

a data gap that necessitates additional research to fully estimate their conservation 

requirements.

14.3.6 Storks, Cormorants, and Anhingas 

Species like the Painted Stork (Mycteria leucocephala) and the Great Cormorant 

(Phalacrocorax carbo) have shown increasing populations trend in IUCN status and 

are listed as “Least Concern” with all other observed species (Table 14.7). These 

birds are important for maintaining the ecological balance of the wetland, as they 

are top predators or play key roles in nutrient cycling.

14.3.7 Herons, Ibis, and Allies 

The recorded bird species, Black-headed Ibis (Threskiornis melanocephalus), clas-

sified as “Near Threatened,” was documented with a decreasing population trend in 

IUCN Red list status (Table 14.8). This calls for conservation measures to ensure its 

survival in the region. Other species, such as the Great White Egret (Ardea alba),
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Table 14.6 Diversity of Shorebirds at Bisalpur Wetland 

S. No. Common name Scientific name Diversity status IUCN red list 

status 

IUCN 

population 

trend 

1 Black-Winged 

Stilt 

Himantopus 

himantopus 

Lc Least concern Increasing 

2 Common 

Greenshank 

Tringa 

nebularia 

Lc Least concern Stable 

3 Common 

Redshank 

Tringa totanus Lc Least concern Unknown 

4 Common 

Sandpiper 

Actitis 

hypoleucos 

Lc Least concern Decreasing 

5 Common Snipe Gallinago 

gallinago 

Lc Least concern Decreasing 

6 Great 

Thick-Knee 

Esacus 

recurvirostris 

C Near 

threatened 

Decreasing 

7 Green Sandpiper Tringa 

ochropus 

Lc Least concern Increasing 

8 Indian 

Thick-Knee 

Burhinus 

indicus 

C Least concern Decreasing 

9 Little Ringed 

Plover 

Charadrius 

dubius 

Lc Least concern Stable 

10 Red-wattled 

Lapwing 

Vanellus 

indicus 

Lc Least concern Unknown 

11 Small Pratincole Glareola 

lactea 

Lc Least concern Unknown 

12 Spotted 

Redshank 

Tringa 

erythropus 

Lc Least concern Stable 

13 Yellow-wattled 

Lapwing 

Vanellus 

malabaricus 

Lc Least concern Stable

Table 14.7 Diversity of Storks, Cormorants, and Anhingas at Bisalpur Wetland 

S. No. Common 

name 

Scientific name Diversity status IUCN red list 

status 

IUCN 

population 

trend 

1 Asian 

Openbill 

Anastomus 

oscitans 

C Least concern Unknown 

2 Great 

Cormorant 

Phalacrocorax 

carbo 

Lc Least concern Increasing 

3 Indian 

Cormorant 

Phalacrocorax 

fuscicollis 

Lc Least concern Unknown 

4 Little 

Cormorant 

Microcarbo 

niger 

Lc Least concern Unknown 

5 Painted 

Stork 

Mycteria 

leucocephala 

C Least concern Increasing
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Table 14.8 Diversity of Herons, Ibis, and Allies at Bisalpur Wetland 

S. No. Common name Scientific name Diversity status IUCN red list 

status 

IUCN 

population 

trend 

1 Black Bittern Ixobrychus 

flavicollis 

Lc Least concern Decreasing 

2 Black-Crowned 

Night Heron 

Nycticorax 

nycticorax 

Lc Least concern Decreasing 

3 Black-Headed 

Ibis 

Threskiornis 

melanocephalus 

Lc Near 

threatened 

Decreasing 

4 Gray Heron Ardea cinerea Lc Least concern Unknown 

5 Great White 

Egret 

Ardea alba C Least concern Unknown 

6 Indian 

Pond-Heron 

Ardeola grayii C Least concern Unknown 

7 Little Egret Egretta garzetta A Least concern Increasing 

8 Medium Egret Ardea intermedia C Least concern Decreasing 

have unknown population trends, highlighting the need for more detailed studies to 

assess their conservation status. 

14.3.8 Owls, Hornbills, Kingfisher, Vultures, Hawks, 

and Allies 

Table 14.9, highlights various birds of prey and related species. Most of the species 

listed, such as the Black-winged Kite (Elanus caeruleus), Crested Serpent-Eagle 

(Spilornis cheela), and White-eyed Buzzard (Butastur teesa), are classified as “Least 

Concern” by the IUCN and have stable population trends. These species are vital 

for controlling prey populations and maintaining ecological balance in the wetland. 

However, the Brown Fish-Owl (Ketupa zeylonensis) has a decreasing population 

trend, which may require monitoring and conservation efforts to prevent further 

decline. For the Common Kingfisher (Alcedo atthis), the population trend remains 

unknown (as per the IUCN record), indicating a gap in data and the need for further 

study at the global and local levels to assess its conservation status.

14.3.9 Bulbuls, Crows, Starlings, Mynas, and Ravens 

Some of the most common passerine species found near the marsh. The majority of 

the species, such as the Common Babbler (Argya caudata) and House Crow (Corvus
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Table 14.9 Recorded diversity of Owls, Hornbills, Kingfisher, Vultures, Hawks, and Allies at 

Bisalpur Wetland 

S. No. Common name Scientific 

name 

Diversity status IUCN red list 

status 

IUCN 

population 

trend 

1 Black-Winged 

Kite 

Elanus 

caeruleus 

Lc Least concern Stable 

2 Brown Fish-Owl Ketupa 

zeylonensis 

Lc Least concern Decreasing 

3 Common 

Kingfisher 

Alcedo atthis C Least concern Unknown 

4 Crested 

Serpent-Eagle 

Spilornis 

cheela 

Lc Least concern Stable 

5 Indian Gray 

Hornbill 

Ocyceros 

birostris 

C Least concern Stable 

6 Long-Legged 

Buzzard 

Buteo rufinus Lc Least concern Stable 

7 Short-Toed 

Snake-Eagle 

Circaetus 

gallicus 

Lc Least concern Stable 

8 White-Eyed 

Buzzard 

Butastur 

teesa 

Lc Least concern Stable

splendens), are classified as “Least Concern” and have stable population trends, 

indicating that they are thriving in the area (Table 14.10). Some species, such as the 

Common Myna (Acridotheres tristis) and Indian Pied Starling (Gracupica contra), 

have growing populations. 

Table 14.10 Recorded diversity of Bulbuls, Crows, Starling, Mynas and Ravens at Bisalpur 

Wetland 

S. No. Common 

name 

Scientific name Diversity status IUCN red list 

status 

IUCN 

population 

trend 

1 Common 

Babbler 

Argya caudata Lc Least concern Stable 

2 Common 

Myna 

Acridotheres 

tristis 

C Least concern Increasing 

3 House Crow Corvus 

splendens 

C Least concern Stable 

4 Indian Pied 

Starling 

Gracupica 

contra 

C Least concern Increasing 

5 Red-Vented 

Bulbul 

Pycnonotus 

cafer 

Lc Least concern Increasing 

6 Rosy Starling Pastor roseus C Least concern Unknown
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14.3.10 Diversity of Old-World Flycatchers 

Table 14.11 focuses on flycatchers and other small birds. All of the mentioned species, 

including the Black Redstart (Phoenicurus ochruros), Blue Rock-Thrush (Monticola 

solitarius), and Indian Robin (Copsychus fulicatus), are classed as “Least Concern” 

by the IUCN, with stable populations. These little insect-eating birds help to keep 

the ecology balanced by regulating insect populations. 

The image depicting the IUCN Red List status of bird species at Bisalpur Wetland 

shows a visual breakdown of the conservation categories for the observed species. 

Most birds are designated as “Least Concern,” which means they are not currently 

in danger of extinction. However, a few species are listed as “Near Threatened” or 

“Vulnerable,” indicating that they are more likely to become endangered if population 

reductions continue Fig. 14.3. The image helps to highlight which species deserve 

immediate conservation attention and acts as a guide for prioritizing future wetland 

protection efforts. 

Table 14.11 Recorded diversity of Old-World Flycatchers at Bisalpur Wetland 

S. No. Common name Scientific 

name 

Diversity status IUCN red list 

status 

IUCN 

population 

trend 

1 Black Redstart Phoenicurus 

ochruros 

Lc Least concern Stable 

2 Blue 

Rock-Thrush 

Monticola 

solitarius 

Lc Least concern Stable 

3 Indian Robin Copsychus 

fulicatus 

Lc Least concern Stable 

4 Oriental 

Magpie-Robin 

Copsychus 

saularis 

Lc Least concern Stable 

Fig. 14.3 IUCN red list 

status of total bird species at 

Bisalpur wetland

95% 

4% 

1% 

Least Concern Near Threatened Vulnerable
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Several migrating bird species were spotted at Rajasthan’s Bisalpur Wetland, 

highlighting the wetland’s importance as a critical stopover and wintering destination 

for these birds. Migratory birds are important indicators of wetland ecological health, 

as they contribute to biodiversity and signal environmental changes (Liu et al. 2015; 

Webb et al. 2010; Yao et al. 2020). Among the recorded species, Bar-headed Goose 

(Anser indicus), Common Pochard (Aythya ferina), Garganey (Spatula querquedula), 

Northern Pintail (Anas acuta), and Northern Shoveler (Spatula clypeata) are notable 

migratory waterfowl that travel to the wetland during winter from regions as far as 

Central Asia and Siberia. These birds rely on wetlands like Bisalpur for food and 

shelter during their long migratory journeys. 

Additionally, shorebirds such as the Black-winged Stilt (Himantopus himantopus) 

and Common Sandpiper (Actitis hypoleucos) are also migratory species, contributing 

to the wetland’s diversity. The presence of these migratory species highlights the 

significance of the wetland as part of global bird migration networks, underlining 

the need for conservation efforts to protect these habitats, which support both resident 

and migratory birds. 

Thus, this study underlines the need for ongoing monitoring and habitat protec-

tion to ensure the long-term survival of bird species at Bisalpur Wetlands. Effective 

conservation efforts should be designed to help declining and at-risk species while 

simultaneously preserving circumstances that sustain healthy populations. 

14.3.11 Habitat Degradation 

Industrialization, human contamination, and climate change are the primary causes 

of wetlands habitat degradation (Cao et al. 2020; Casazza et al. 2021; Donnelly 

et al. 2022). The Bisalpur Wetland has experienced significant habitat degradation in 

recent years, as illustrated by various environmental changes and human activities 

that directly impact bird populations and other wildlife. An analysis of land cover 

changes and direct observations from 2015 to 2023 reveals the scale and specifics of 

this decline, underscoring concerns for the wetland ecosystem’s sustainability and 

the long-term viability of bird habitats. Compared to habitat fragmentation’s more 

varied and weaker effects, habitat loss often significantly negatively impacts species 

distribution and abundance (Gutzwiller and Flather 2011; Quesnelle et al. 2013). 

14.3.12 Vegetation Loss 

In 2015, the vegetation around the Bisalpur Wetland was dense, providing important 

cover and resources for bird species (Fig. 14.4). By 2023, this area had undergone 

significant degradation, with much of the original vegetation replaced by barren 

ground or built areas (Fig. 14.5). The loss of greenery is essential because birds rely 

on vegetated regions for nesting, shelter, and food. The decline of native plant species



14 Bird Diversity, Habitat Degradation, and Ecosystem Services … 289

disturbs food webs, reducing insect populations that feed many birds. Forested 

regions surrounding wetlands act as crucial buffer zones, providing shade, lowering 

runoff, and filtering pollutants before they enter the wetland (Nair et al. 2024; Walton 

et al. 2020). Trees and native plants in these locations serve as habitat and food 

for a variety of bird species. Reduced forest cover, as seen in many wetland areas, 

causes increased erosion, sedimentation, and nutrient runoff, disrupting the wetland’s 

ecological balance and reducing habitat quality for birds (Irvine et al. 2022;Wu et al.  

2024; Xu et al.  2023).

14.3.13 Construction and Land Use Changes 

Construction in the Bisalpur basin has also contributed significantly to habitat degra-

dation (Fig. 14.6). Informal building complexes have extended across previously 

undeveloped areas, diminishing available habitat for wildlife (Fig. 14.7). Further-

more, the increase in unplanned structures, many of which lack effective waste 

management, introduces pollution, degrading the quality of the wetland ecosystem 

(Danso et al. 2021; Sarkar and Maji 2022).

14.3.14 Deforestation and Pollution 

The local community’s reliance on firewood for fuel has accelerated degradation 

around the wetland (Figs. 14.8 and 14.9). Tree felling for firewood directly harms 

the habitat by removing bird roosting spots and native vegetation, which maintains 

a larger ecological balance. Increased human activity depletes resources and causes 

disruptions in avian activities such as breeding and foraging (Cao et al. 2024; Duan 

et al. 2022). Solid trash accumulation and algae blooms pose additional risks in 

the Bisalpur Wetland. Human activities, such as garbage disposal in and around 

wetlands, contribute to pollution, degrade water quality, and introduce poisons into 

the environment. Algal blooms, which are most likely caused by nutrient runoff, 

deplete oxygen levels in the water, endangering fish populations and other aquatic 

species that provide food for birds. These blooms can also release toxic poisons to 

birds and humans, reducing the wetland’s ecological health.

However, the degradation of the Bisalpur Wetland poses severe threats to resident 

and migratory bird species, including the following major concerns:

• Habitat Loss and Fragmentation: As vegetation cover decreases and built-up 

areas expand, bird habitats become fragmented, reducing the available space and 

making it difficult for birds to find food, shelter, and mates. 
• Food Source Decline: Reduced plant cover disrupts the food chain, impacting 

insect populations and aquatic life.
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Fig. 14.6 Land degradation and construction work in Bisalpur catchment 

Fig. 14.7 Constructed informal housing and firewood collection



14 Bird Diversity, Habitat Degradation, and Ecosystem Services … 293

Fig. 14.8 Firewood collection for cooking fuel by wetland surrounding people

• Increased Human Disturbance: The rise in human presence and activities around 

the wetland disturbs the natural behavior of birds, potentially reducing breeding 

success and survival rates. 
• Pollution and Toxins: Solid waste and algal blooms introduce toxins. 

14.3.15 Wetland Ecosystem Services 

14.3.15.1 General, Social and Demographic Environment 

Rajasthan, India’s largest state, faces significant water scarcity due to its harsh 

climate and geographical conditions. With 85 out of 142 desert blocks, it strug-

gles to meet water demand and agricultural and non-agricultural needs (Goyal and 

Gaur 2022; Gummagolmath and Anand 2023; Pointet 2022). Dams have played a
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Fig. 14.9 Human disturbance, algal bloom, solid waste, and land degradation at wetland

crucial role in addressing these challenges by providing water for drinking, irri-

gation, urban needs, hydroelectric power generation, and wildlife conservation, 

delivering substantial social and economic benefits (Hoque et al. 2022; Laxmi 

and Goyal 2023; Saad and Gamatié 2020). However, the Bisalpur wetland was 

created in the 1990s after constructing a dam on Banas River. In compliance with 

the authority conferred by Rule 7 of the Wetland (Conservation and Manage-

ment) Rules, 2017, and the stipulations of the Environment (Protection) Act, 

1986 (Central Act No. 29 of 1986), the State Government formally designates 

the Bisalpur wetland (http://rmsc.health.rajasthan.gov.in/content/dam/environment/ 

env-swa/FinalWetlandGazetteNotification/Bisalpur%20wetland%20Tonk.pdf). It is 

located in the Toda Raisingh tehsil of Tonk district. Four nearby villages, Rajmahal, 

Rampura, Botunda, and Tharoli, are situated within a 5-km radius downstream from 

the dam. Figures 14.10, 14.11, 14.12 and 14.13 show the demographic details of inter-

connected villages in Bisalpur wetland; the figures’ statistical data were compiled

http://rmsc.health.rajasthan.gov.in/content/dam/environment/env-swa/FinalWetlandGazetteNotification/Bisalpur%20wetland%20Tonk.pdf
http://rmsc.health.rajasthan.gov.in/content/dam/environment/env-swa/FinalWetlandGazetteNotification/Bisalpur%20wetland%20Tonk.pdf
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Fig. 14.10 Census status of the village Rajamahal 
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Fig. 14.11 Census status of the village Rampura

from India Primary Census Abstract 2011 (Visualizations | Government of India). 

However, the investigation of the Bisalpur wetland identified major social activities 

carried out by locals, including as visiting religious places, performing traditional 

rites on the marsh, collecting wood for fuel, and using water for household purposes. 

These activities highlight the close relationship between the wetland and the cultural 

practices of the surrounding populations. 

14.3.15.2 Interpretation of Various Goods and Services in and Around 

Wetland 

Wetlands are key ecosystems that provide many goods and services, which play an 

essential role in contributing to local and global socio-economic values (Ahmad et al.
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Fig. 14.12 Census status of the village Botunda
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Fig. 14.13 Census status of the village Tharoli

2024; Singh et al. 2023; Slagter et al. 2020; Smalling et al. 2021). During the study 

period, it was observed that the Bisalpur Wetland supports numerous use and non-

use values. These include providing food, wood, irrigation water, wildlife habitat, 

drinking water, flood and drought mitigation in the desert region, aquatic habitats, 

fertile agricultural land, and fulfilling religious and spiritual needs. Additionally, it 

holds historical significance and meets many primary needs of the local households. 

Moreover, the wetland values data was compiled from literature, secondary sources, 

and field surveys. The various services offered by the Bisalpur Wetland are detailed 

below.
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14.3.15.3 Use Value 

a. Direct Use Value 

Fish 

The Bisalpur wetland, which is supported by a constant supply of fresh water from 

the Banas River and extensive submerged vegetation across varied habitats, sustains 

a good fishery and contributes significantly to Rajasthan’s economy. The previous 

study recorded a total of 21 species of fish on the Bisalpur wetland (Banyal and Kumar 

2015). People can easily interpret the fish’s movement in transparent shallow water. 

Moreover, the Rajasthan State Wetland Authority prohibited the public from feeding 

and capturing fish. Where registered commercial fishing activities are permitted on 

the Bisalpur wetland. However, the local communities that live near the wetlands 

rely significantly on fish as a staple of their diet, considering it their principal source 

of nutrition. Local people are directly or indirectly involved such as working as boat 

operators or engaging in tasks like setting up and retrieving fishing nets in fishing 

activity with the Bisalpur Wetland Fishery Authority (RR Fisheries, Figs. 14.14 and 

14.15). Fishing is an essential part of their livelihood and sustenance because it is 

ingrained in their everyday lives and cultural customs. 

Agriculture 

The Bisalpur wetland plays a crucial role in supporting a large population by 

providing irrigation water to the downstream regions of the Tonk district. A survey

Fig. 14.14 Fish collection, storage, and supply facilities at the Bisalpur wetland
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Fig. 14.15 Fisheries and fish catching boat near wetland

revealed that the wetland consistently supplies sufficient water for various agricul-

tural practices, particularly in areas receiving dam water discharge (Figs. 14.16 and 

14.17). Agriculture remains the primary occupation for people living in the villages 

surrounding the wetland (Fig. 14.18). This is because, unlike other arid and semi-arid 

regions of Rajasthan, where access to adequate irrigation water is a persistent chal-

lenge, the Bisalpur wetland ensures a reliable water supply. Additionally, employ-

ment opportunities in these areas are limited, as most families depend on agriculture, 

and there are few alternative income sources due to the scarcity of industries in 

resettled areas.

Moreover, a report of the District Environment Plan (DEP_Tonk.pdf) highlights 

that Tonk district (in which Bisalpur wetland is located) is surrounded by five major 

districts of Rajasthan (Jaipur, Ajmer, Bhilwara, Bundi, Swai Madhopur) and animal 

husbandry and agriculture are the primary professions of the people living there 

(Desai 2009; Mahala et al. 2023; Sharma and Chakraborty 2021). 

Fuel Wood and Fodder 

The Bisalpur wetland provides significant ecosystem services, such as fuelwood 

and fooder. Figure 14.19, the wetlands support local populations’ harvesting of 

wood, which is largely utilized for cooking fuel. Furthermore, the nearby pastureland 

provides valuable food for livestock. These services are critical to the local popula-

tion’s survival (Adhya and Banerjee 2022), especially in rural locations where other 

resources are few. This dependency emphasizes the wetland’s role in meeting both 

energy and agricultural needs.
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Fig. 14.18 Agriculture cropping in the downstream region of wetland

Fig. 14.19 Collected wood for cooking fuel by local people and surrounding pasture land 

Recreation and Tourism 

The recreation value of the wetland is defined by various activities such as eco-

tourism, boating, fishing, cultural, aesthetic, and spiritual benefits, which contribute
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to the local economy (Xu and He 2022; Yu et al.  2018). However, the Rajasthan 

government forest department has started the LavKush Vaatika near the transition 

zone of wetland water and land (Fig. 14.20). Moreover, it is under construction, and 

some primary child gaming equipment has been installed, including trails that allow 

people to explore and appreciate the beauty of this wetland (Fig. 14.21). The Bisalpur 

wetland, with its beautiful mountainous landscape, the ancient Lord Shiva temple, 

and a fish aquarium (Fig. 14.22), attracts a number of visitors from various regions 

of Rajasthan state as well as the Nation, particularly during the rainy season (July to 

September). Aquariums have a variety of fish species such as L. cichlid, Green terror, 

Flowerhorn cichlid, Asian arowana, Red tail, Stingray, Oscar, Bala Shark, Kais fish, 

Angelfish, Gourami fish, Tinfoil barb, Pirate perch, and many of it is not in the living 

stage due to poor maintenance of Aquarium (Fig. 14.23). 

b. Indirect Use Value 

In-Filtration, Nutrient Recycling, Flood Control and Micro Climate 

Wetlands offer excellent natural filtering capacity due to their unique ecological prop-

erties (Bam and Ireson 2019; Xu et al.  2024). The Bisalpur wetland benefits from the 

continuous inflow of water from the Banas River and supports a sufficient growth of 

vegetation, much of which is submerged in shallow water (Fig. 14.24). This environ-

ment creates an ideal habitat for various fish and mollusk species. During the survey, 

we also observed lichens and algae thriving on stones and dam pillars. The submerged 

plants play an important role in preventing eutrophication; they trap the sediment 

and absorb the nutrients from the water. These factors collectively contribute to 

nutrient recycling and demonstrate the wetland’s natural self-purification capabili-

ties. However, this wetland is located in the Aravalli range, surrounded by beautiful

Fig. 14.20 Allocation of LavKush Vatika and their entrance gate
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Fig. 14.21 Gaming zone, hiking, and nature walks 

Fig. 14.22 Fish aquarium and ancient Lord Shiva temple

Khamnor Hill and 48.31 km square of Bisalpur Conservation Reserve. It creates a 

micro-climate to sustain various biodiversity habitats and resting sites for tourists 

and local people. Moreover, this hill is under moderate slopy geographical condi-

tions, especially the discharge region at the Dam side, making possible threats of 

flood hazard. Hence, the Bisalpur wetland plays an essential role in trapping and 

slowing down the flow of surface water and reducing the possibility of flooding in
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Fig. 14.23 Inner portion of the aquarium

Fig. 14.24 Submerges, stones in shallow water, and surrounding vegetation at wetland

the downstream region of the wetland, especially in extreme weather conditions in 

the rainy season. 
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Fig. 14.25 Bisaldev Temple at wetland 

Religious 

When religious and historic structures are combined with nature, the result is a 

stunning location that draws tourists from all around. The Bisalpur wetland has a 

beautiful ancient Temple on the bank of the Dam (Fig. 14.25). The name of the temple 

is Bisaldeo temple. The temple was built using ancient Hindu architectural design. 

The temple is dedicated to Lord Shiva and is one of the ancient famous temples 

in Rajasthan state. This temple has significant social and religious importance. The 

temple was built in the twelfth century by the Chahamana king Vigraharaja IV, 

also known as Bisal Deo, and is listed by the Archaeological Survey of India as a 

“Monument of National Importance” Vigraharaja IV, a devout follower of Gokarna. 

The internal wall of the temple is full of stone carving art and the ancient structure 

(Fig. 14.26). There are four small modern temples on the opposite side of the Dam 

gate (water discharge region), along with one Suny Dev Temple at the side of the 

Dam. However, due to the availability of a resting room, a small guest house, a 

parking zone, and an open walking street on Dam, this area is the primary attraction 

for visitors (Fig. 14.27).

However, these religious places located on or near Bisalpur wetland attract local 

visitors, especially during festivals, rituals, or pilgrimages (Fig. 14.28). This number 

of visitors can provide economic benefits to the surrounding communities in several 

ways such as boosting of selling in local shop, cultural tourisem and not only 

support local livelihoods but also contribute to preserving the cultural and spiritual 

significance of these areas.
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Fig. 14.26 Internal view of Bisaldev Temple 

Fig. 14.27 Temples at the opposite side of the Dam
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Fig. 14.28 Road side shops and visitors 

(II) Non-use Value: 

Biodiversity 

The Bisalpur wetland catchment area is rich in vegetation cover, especially the hilly 

patch of Bisalpur Conservation Reserve. The Bisalpur Dam’s construction, rehabili-

tation, and improvement, funded by the World Bank, have led to the classification of 

this conservation reserve as a “Natural Habitat” under Environmental and Social Stan-

dards (World Bank Document). Moreover, the conservation has declared a protective 

landscape for the conservation and management of flora and fauna habitat. Also, the 

rights of the people who are living within the protected area are not affected and they 

benefit from some local primary requirements for conservation reserve resources, 

including wood, fodder, and habitat for domestic animals. The Prosopis juliflora 

predominates in this region and is typical of a dry deciduous forest. One of the most 

common hyper-accumulating plants is P. juliflora, P. juliflora is widely distributed in 

the fluoride-endemic desert and semiarid regions of Rajasthan, India. The floodplain 

region of this area soil has good fertility due to sediment deposition by the flow of 

the Banas River. Hence, a good soil cover sustains a variety of agricultural crops. An 

aquatic environment’s productivity is directly proportional to its plankton density. 

The plankton species is an important source of food for small fishes and plays an 

important role in the food chain of aquatic ecosystems (Ariadi et al. 2022; Mo et al.  

2014; Rasdi et al. 2020). Previous study recorded a good number of plankton and fish 

diversity in Bisalpur wetland water (Banyal and Kumar 2015; Summarwar 2012). In 

the current study, all over 75 species have been listed in the Bisalpur wetland, which 

shows a good diversity of avian species and attracts visitors in the winter session.
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14.4 Conclusion 

This study discovered that the Bisalpur Wetland provides a unique home for various 

birds during winter. According to the IUCN status, it has 95% least concern, 4% near 

threatened, and 1% vulnerable bird species. Migratory species like the Bar-headed 

Goose, Common Pochard, and Northern Pintail highlight the wetland’s biological 

importance as a stopover and wintering location on major migration routes. These 

species rely on Bisalpur Wetland for basic resources such as food and shelter, demon-

strating the wetland’s critical role in maintaining global bird migration networks. The 

ecological health of the Bisalpur Wetland is inextricably tied to the well-being of 

these migratory birds, who serve as indicators of the general environmental status. 

Bisalpur Wetland degradation, primarily caused by human activity, has resulted in 

severe habitat loss, vegetation decline, and pollution, all affecting wetland bird popu-

lations. Quick action is required to protect and restore this habitat. Moreover, the 

Bisalpur wetland serves as a lifeline for the local population and ecosystem, offering 

essential goods and services. Its contribution to agriculture, fisheries, and water avail-

ability directly supports the livelihoods of surrounding communities, while its biodi-

versity and cultural significance enhance its value as a conservation site. However, 

effective management is required to address issues such as facility maintenance 

and flood risk, ensuring long-term sustainability. Preserving this wetland is vital for 

balancing ecological health, cultural heritage, and socio-economic benefits, making 

it an indispensable resource for the region. 
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